login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177123
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=7, k=1 and l=1.
1
1, 7, 17, 87, 417, 2347, 13497, 81607, 504537, 3192747, 20529537, 133876327, 882924177, 5879675307, 39478170697, 266973261127, 1816729697097, 12431013514667, 85476914070417, 590327766229607, 4093067887259777
OFFSET
0,2
COMMENTS
To see by recurrence: a(n)=7 mod10 for n>0.
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=1).
Conjecture: +(n+1)*a(n) +(-7*n+2)*a(n-1) +9*(-n+3)*a(n-2) +(47*n-142)*a(n-3) +48*(-n+4)*a(n-4) +16*(n-5)*a(n-5)=0. - R. J. Mathar, Mar 02 2016
EXAMPLE
a(2)=2*1*7+2+1=17. a(3)=2*1*17+2+7^2+1+1=87. a(4)=2*1*87+2+2*7*17+2+1=417.
MAPLE
l:=1: : k := 1 : m :=7: d(0):=1:d(1):=m: for n from 1 to 32 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 34); seq(d(n), n=0..32);
CROSSREFS
Cf. A177122.
Sequence in context: A123206 A035078 A359015 * A124165 A239150 A092057
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, May 03 2010
STATUS
approved