login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177125
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=9, k=1 and l=1.
1
1, 9, 21, 127, 637, 4007, 24821, 164659, 1106197, 7642295, 53521277, 380565539, 2735155565, 19854481655, 145295269157, 1070969265539, 7943300521541, 59241248227575, 443987081678157, 3342101935397795, 25256877059336861
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=1).
Conjecture: +(n+1)*a(n) +(-7*n+2)*a(n-1) +(-17*n+43)*a(n-2) +(71*n-214)*a(n-3) +72*(-n+4)*a(n-4) +24*(n-5)*a(n-5)=0. - R. J. Mathar, Mar 02 2016
EXAMPLE
a(2)=2*1*9+2+1=21. a(3)=2*1*21+2+81+1+1=127.
MAPLE
l:=1: : k := 1 : m :=9: d(0):=1:d(1):=m: for n from 1 to 32 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 34); seq(d(n), n=0..32);
CROSSREFS
Cf. A177124.
Sequence in context: A359022 A222809 A230648 * A050860 A339724 A342409
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, May 03 2010
STATUS
approved