login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176509
Composite numbers m for which A064380(m) = A000010(m).
10
8, 27, 125, 128, 343, 1331, 2187, 2197, 4913, 6859, 12167, 24389, 29791, 32768, 50653, 68921, 78125, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 823543, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091
OFFSET
1,1
COMMENTS
Theorem. A064380(m) = A000010(m) iff m has the form m=p^(2^k-1), k>=1, p a prime. Eliminating the primes (k=1), the terms of the sequence have this form for k>1. All terms of A030078 (k=2) and A092759 (k=3) and prime powers of A010803 (k=4) are in the sequence, for example.
LINKS
FORMULA
a(n) ~ n^3 log^3 n. - Charles R Greathouse IV, Feb 19 2013
Sum_{n>=1} 1/a(n) = Sum_{k>=2} 1/P(2^k-1) = 0.183077059924063305405..., where P(s) is the prime zeta function. - Amiram Eldar, Jul 11 2024
MATHEMATICA
seq[max_] := Module[{ps = Select[Range[Floor[Surd[max, 3]]], PrimeQ], e, k, s = {}}, Do[e = Floor[Log[ps[[i]], max]]; k = Floor[Log2[e + 1]]; s = Join[s, ps[[i]]^(2^Range[2, k] - 1)], {i, 1, Length[ps]}]; Sort[s]]; seq[3*10^6] (* Amiram Eldar, Mar 26 2023 *)
PROG
(PARI) is(n)=my(e=isprimepower(n)); e>2 && 2^valuation(e+1, 2)==e+1 \\ Charles R Greathouse IV, Feb 19 2013
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Apr 19 2010
EXTENSIONS
128 inserted, 1024 deleted, 2187 inserted, 32768 inserted, etc. - R. J. Mathar, Nov 21 2010
More terms from Amiram Eldar, Mar 26 2023
STATUS
approved