login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176508 Triangle, read by rows, defined by T(n, k) = b(n) - b(k) - b(n-k) + 1, b(n) = A003269(n). 1
1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 3, 5, 6, 7, 7, 7, 6, 5, 3, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,24

COMMENTS

Row sums are: {1, 2, 2, 2, 2, 6, 10, 14, 18, 30, 51,...}.

LINKS

Indranil Ghosh, Rows 0..100, flattened

Indranil Ghosh, Python Program to generate the b-file

FORMULA

T(n,m) = A003269(n) - A003269(m) - A003269(n-m) + 1.

EXAMPLE

Triangle:

  1;

  1, 1;

  1, 0, 1;

  1, 0, 0, 1;

  1, 0, 0, 0, 1;

  1, 1, 1, 1, 1, 1;

  1, 1, 2, 2, 2, 1, 1;

  1, 1, 2, 3, 3, 2, 1, 1;

  1, 1, 2, 3, 4, 3, 2, 1, 1;

  1, 2, 3, 4, 5, 5, 4, 3, 2, 1;

  1, 3, 5, 6, 7, 7, 7, 6, 5, 3, 1;

...

T(6,3) = A003269(6) - A003269(3) - A003269(6-3) + 1 = 3 - 1 - 1 + 1 = 2. - Indranil Ghosh, Feb 17 2017

MATHEMATICA

b[0]:= 0; b[1]:= 1; b[2]:= 1; b[3]:= 1; b[n_]:= b[n] = b[n-1] + b[n-4]; T[n_, m_]:= b[n] - b[m] - b[n-m] + 1; Table[T[n, m], {n, 0, 10}, {m, 0, n} ]//Flatten

PROG

(Python) # See Indranil Ghosh link

(PARI)

{b(n) = if(n==0, 0, if(n==1, 1, if(n==2, 1, if(n==3, 1, b(n-1) +b(n-4)))) )};

{T(n, k) = b(n) -b(k) -b(n-k) +1}; \\ G. C. Greubel, May 06 2019

(MAGMA) b:= func< n | n eq 0 select 0 else (&+[Binomial(n-1-3*j, j): j in [0..Floor((n-1)/3)]]) >; [[b(n)-b(k)-b(n-k)+1: k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 06 2019

(Sage)

def b(n):

    if (n==0): return 0

    elif (n==1): return 1

    elif (n==2): return 1

    elif (n==3): return 1

    else: return b(n-1) + b(n-4)

def T(n, k): return b(n) - b(k) - b(n-k) + 1

[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 06 2019

CROSSREFS

Cf. A003269.

Sequence in context: A037804 A316894 A081503 * A241492 A227739 A047971

Adjacent sequences:  A176505 A176506 A176507 * A176509 A176510 A176511

KEYWORD

nonn,easy,tabl

AUTHOR

Roger L. Bagula, Apr 19 2010

EXTENSIONS

Name and formula sections were edited and corrected by Indranil Ghosh, Feb 17 2017

Edited by G. C. Greubel, May 06 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 11:01 EST 2021. Contains 349429 sequences. (Running on oeis4.)