login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241492
a(n) = |{0 < g < prime(n): g is a primitive root modulo prime(n) and g is a product of two consecutive integers}|.
5
0, 1, 1, 0, 2, 2, 2, 1, 1, 1, 1, 2, 3, 3, 2, 3, 5, 3, 3, 2, 2, 2, 6, 3, 2, 5, 3, 4, 5, 5, 4, 7, 7, 7, 5, 4, 3, 5, 5, 8, 6, 2, 5, 4, 5, 3, 2, 5, 7, 6, 5, 4, 5, 8, 10, 8, 10, 4, 6, 6, 7, 8, 3, 4, 4, 9, 6, 4, 7, 8, 7, 5, 7, 7, 6, 9, 12, 6, 11, 8
OFFSET
1,5
COMMENTS
Conjecture: a(n) > 0 for all n > 4. In other words, any prime p > 7 has a primitive root g < p of the form k*(k+1).
We have verified this for all n = 5, ..., 2*10^5.
See also A239957 and A239963 for similar conjectures. Clearly, for any prime p > 3, one of the three numbers 1*2, 2*3, 3*4 is a quadratic residue modulo p.
LINKS
Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290 [math.NT], 2014.
EXAMPLE
a(9) = 1 since 4*5 = 20 is a primitive root modulo prime(9) = 23.
a(10) = 1 since 1*2 = 2 is a primitive root modulo prime(10) = 29.
a(11) = 1 since 3*4 = 12 is a primitive root modulo prime(11) = 31.
MATHEMATICA
f[k_]:=f[k]=k(k+1)
dv[n_]:=dv[n]=Divisors[n]
Do[m=0; Do[Do[If[Mod[f[k]^(Part[dv[Prime[n]-1], i]), Prime[n]]==1, Goto[aa]], {i, 1, Length[dv[Prime[n]-1]]-1}]; m=m+1; Label[aa]; Continue, {k, 1, (Sqrt[4*Prime[n]-3]-1)/2}]; Print[n, " ", m]; Continue, {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 23 2014
STATUS
approved