OFFSET
1,9
COMMENTS
a(n) = one-half of (number of pairs (i,j) in [1..n] X [1..n] with integral geometric mean sqrt(i*j)) - (number of pairs (i,j) in [1..n] X [1..n] with integral harmonic mean 2*i*j/(i+j)).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..65536
FORMULA
a(n) = A362932(n)/2.
MAPLE
a:= proc(n) option remember; `if`(n=0, 0, add(
`if`(irem(2*i*n, i+n)=0, -1, 0)+
`if`(issqr(i*n), 1, 0), i=1..n-1)+a(n-1))
end:
seq(a(n), n=1..80); # Alois P. Heinz, Aug 28 2023
PROG
(Python)
from sympy.ntheory.primetest import is_square
def A362933(n): return sum((1 if T else -1) for x in range(1, n+1) for y in range(1, x) if (T:=is_square(x*y))^(not (x*y<<1)%(x+y))) # Chai Wah Wu, Aug 29 2023
CROSSREFS
KEYWORD
sign,look
AUTHOR
N. J. A. Sloane, Aug 28 2023
STATUS
approved