login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176197
Sum of 4 distinct nonzero fourth powers.
4
354, 723, 898, 963, 978, 1394, 1569, 1634, 1649, 1938, 2003, 2018, 2178, 2193, 2258, 2499, 2674, 2739, 2754, 3043, 3108, 3123, 3283, 3298, 3363, 3714, 3779, 3794, 3954, 3969, 4034, 4194, 4323, 4338, 4369, 4403, 4434, 4449, 4578, 4738, 4803, 4818, 4978
OFFSET
1,1
COMMENTS
1^4+2^4+3^4+4^4=354, 1^4+2^4+3^4+5^4=723, .., 2^4+3^4+4^4+5^4=978,..
MAPLE
# returns number of ways of writing n as a^4+b^4+c^4+d^4, 1<=a<b<c<d.
A176197 := proc(n)
local a, i, j, k, l, res ;
a := 0 ;
for i from 1 do
if i^4 > n then
break ;
end if;
for j from i+1 do
if i^4+j^4 > n then
break ;
end if;
for k from j+1 do
if i^4+j^4+k^4> n then
break;
end if;
res := n-i^4-j^4-k^4 ;
if issqr(res) then
res := sqrt(res) ;
if issqr(res) then
l := sqrt(res) ;
if l > k then
a := a+1 ;
end if;
end if;
end if;
end do:
end do:
end do:
a ;
end proc:
for n from 1 do
if A176197(n) > 0 then
print(n) ;
end if;
end do: # R. J. Mathar, May 17 2023
MATHEMATICA
lst={}; Do[Do[Do[Do[AppendTo[lst, a^4+b^4+c^4+d^4], {d, c+1, 11}], {c, b+1, 10}], {b, a+1, 9}], {a, 1, 8}]; Sort@lst
CROSSREFS
Subsequence of A003338.
Sequence in context: A377219 A270782 A251127 * A157668 A374696 A250157
KEYWORD
nonn
AUTHOR
STATUS
approved