Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 May 17 2023 10:11:48
%S 354,723,898,963,978,1394,1569,1634,1649,1938,2003,2018,2178,2193,
%T 2258,2499,2674,2739,2754,3043,3108,3123,3283,3298,3363,3714,3779,
%U 3794,3954,3969,4034,4194,4323,4338,4369,4403,4434,4449,4578,4738,4803,4818,4978
%N Sum of 4 distinct nonzero fourth powers.
%C 1^4+2^4+3^4+4^4=354, 1^4+2^4+3^4+5^4=723, .., 2^4+3^4+4^4+5^4=978,..
%H <a href="http://www.sciencedaily.com/releases/2008/03/080314145039.htm">Part of "Euler's Equation of degree four"</a>
%p # returns number of ways of writing n as a^4+b^4+c^4+d^4, 1<=a<b<c<d.
%p A176197 := proc(n)
%p local a,i,j,k,l,res ;
%p a := 0 ;
%p for i from 1 do
%p if i^4 > n then
%p break ;
%p end if;
%p for j from i+1 do
%p if i^4+j^4 > n then
%p break ;
%p end if;
%p for k from j+1 do
%p if i^4+j^4+k^4> n then
%p break;
%p end if;
%p res := n-i^4-j^4-k^4 ;
%p if issqr(res) then
%p res := sqrt(res) ;
%p if issqr(res) then
%p l := sqrt(res) ;
%p if l > k then
%p a := a+1 ;
%p end if;
%p end if;
%p end if;
%p end do:
%p end do:
%p end do:
%p a ;
%p end proc:
%p for n from 1 do
%p if A176197(n) > 0 then
%p print(n) ;
%p end if;
%p end do: # _R. J. Mathar_, May 17 2023
%t lst={};Do[Do[Do[Do[AppendTo[lst,a^4+b^4+c^4+d^4],{d,c+1,11}],{c,b+1,10}],{b,a+1,9}],{a,1,8}];Sort@lst
%Y Subsequence of A003338.
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Apr 11 2010