login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176196
Primes such that the sum of k-th powers of digits, for each of k = 1, 2, 3, and 4, is also a prime.
1
11, 101, 113, 131, 223, 311, 353, 461, 641, 661, 883, 1013, 1031, 1103, 1301, 1439, 1451, 1471, 1493, 1697, 1741, 2111, 2203, 3011, 3347, 3491, 3659, 4139, 4337, 4373, 4391, 4733, 4931, 5303, 5639, 5693, 6197, 6359, 6719, 6791, 6917, 6971, 7411, 7433
OFFSET
1,1
COMMENTS
For k = 1, 2, and 3 see A176179
REFERENCES
Charles W. Trigg, Journal of Recreational Mathematics, Vol. 20(2), 1988.
LINKS
Mike Mudge, Morph code, Hands On Numbers Count, Personal Computer World, May 1997, p. 290.
EXAMPLE
For the prime number n=14549 we obtain :
1 + 4 + 5 + 4 + 9 = 23 ;
1^2 +4^2 + 5^2 +4^2 + 9^2 = 139 ;
1^3 +4^3 + 5^3 +4^3 + 9^3 = 983 ;
1^4 +4^4 + 5^4 +4^4 + 9^4 = 7699 ;
MAPLE
with(numtheory):for n from 2 to 20000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:s3:=0:s4:=0:for m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :s1:=s1+u:s2:=s2+u^2:s3:=s3+u^3:s4:=s4+u^4:od:if type(n, prime)=true and type(s1, prime)=true and type(s2, prime)=true and type(s3, prime)=true and type(s4, prime)=true then print(n):else fi:od:
MATHEMATICA
Select[Prime[Range[1000]], And@@PrimeQ[Total/@Table[IntegerDigits[#]^n, {n, 4}]]&] (* Harvey P. Dale, Jun 16 2013 *)
PROG
(Python)
from sympy import isprime, primerange
def ok(p):
return all(isprime(sum(int(d)**k for d in str(p))) for k in range(1, 5))
def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]
print(aupto(7443)) # Michael S. Branicky, Nov 23 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Apr 11 2010
STATUS
approved