OFFSET
1,1
COMMENTS
See A091365 for the exceptions for the case where the sum of the digits of p is not prime, but the sum of the cubes of the digits of p is prime.
REFERENCES
Charles W. Trigg, Journal of Recreational Mathematics, Vol. 20(2), 1988.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000
Mike Mudge, Morph code, Hands On Numbers Count, Personal Computer World, May 1997, p. 290.
EXAMPLE
For the prime number n =5693 we obtain :
5 + 6 + 9 + 3 = 23 ;
5^2 + 6^2 + 9^2 + 3^2 = 151 ;
5^3 + 6^3 + 9^3 + 3^3 = 1097.
MAPLE
with(numtheory):for n from 2 to 10000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:s3:=0:for m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :s1:=s1+u:s2:=s2+u^2:s3:=s3+u^3:od:if type(n, prime)=true and type(s1, prime)=true and type(s2, prime)=true and type(s3, prime)=true then print(n):else fi:od:
MATHEMATICA
okQ[n_]:=Module[{idn=IntegerDigits[n]}, And@@PrimeQ[Total/@{idn, idn^2, idn^3}]]; Select[Prime[Range[600]], okQ] (* Harvey P. Dale, Jan 18 2011 *)
PROG
(Python)
from sympy import isprime, primerange
def ok(p):
return all(isprime(sum(int(d)**k for d in str(p))) for k in [1, 2, 3])
def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]
print(aupto(4409)) # Michael S. Branicky, Nov 23 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Apr 10 2010
EXTENSIONS
Corrected and extended by Harvey P. Dale, Jan 18 2011
STATUS
approved