login
A176179
Primes such that the sum of digits, the sum of the squares of digits and the sum of 3rd powers of their digits is also a prime.
2
11, 101, 113, 131, 199, 223, 311, 337, 353, 373, 449, 461, 463, 641, 643, 661, 733, 829, 883, 919, 991, 1013, 1031, 1103, 1301, 1439, 1451, 1471, 1493, 1499, 1697, 1741, 1949, 2089, 2111, 2203, 2333, 2441, 2557, 3011, 3037, 3307, 3323, 3347, 3491, 3583, 3637, 3659, 3673, 3853, 4049, 4111, 4139, 4241, 4337, 4373, 4391, 4409
OFFSET
1,1
COMMENTS
See A091365 for the exceptions for the case where the sum of the digits of p is not prime, but the sum of the cubes of the digits of p is prime.
REFERENCES
Charles W. Trigg, Journal of Recreational Mathematics, Vol. 20(2), 1988.
LINKS
Mike Mudge, Morph code, Hands On Numbers Count, Personal Computer World, May 1997, p. 290.
EXAMPLE
For the prime number n =5693 we obtain :
5 + 6 + 9 + 3 = 23 ;
5^2 + 6^2 + 9^2 + 3^2 = 151 ;
5^3 + 6^3 + 9^3 + 3^3 = 1097.
MAPLE
with(numtheory):for n from 2 to 10000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:s3:=0:for m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :s1:=s1+u:s2:=s2+u^2:s3:=s3+u^3:od:if type(n, prime)=true and type(s1, prime)=true and type(s2, prime)=true and type(s3, prime)=true then print(n):else fi:od:
MATHEMATICA
okQ[n_]:=Module[{idn=IntegerDigits[n]}, And@@PrimeQ[Total/@{idn, idn^2, idn^3}]]; Select[Prime[Range[600]], okQ] (* Harvey P. Dale, Jan 18 2011 *)
PROG
(Python)
from sympy import isprime, primerange
def ok(p):
return all(isprime(sum(int(d)**k for d in str(p))) for k in [1, 2, 3])
def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]
print(aupto(4409)) # Michael S. Branicky, Nov 23 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Apr 10 2010
EXTENSIONS
Corrected and extended by Harvey P. Dale, Jan 18 2011
STATUS
approved