login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155075
Primes with one digit used exactly twice, all others digits distinct.
1
11, 101, 113, 131, 151, 181, 191, 199, 211, 223, 227, 229, 233, 277, 311, 313, 331, 337, 353, 373, 383, 433, 443, 449, 499, 557, 577, 599, 661, 677, 727, 733, 757, 773, 787, 797, 811, 877, 881, 883, 887, 911, 919, 929, 977, 991, 997, 1009, 1013, 1019, 1021
OFFSET
1,1
COMMENTS
The sequence is finite. The last 10 terms are 98876342501, 98876405231, 98876421053, 98876502143, 98876504123, 98876520143, 98876524013, 98876524301, 98876530421, 98876532401. - Zak Seidov, Dec 18 2014
Number of n-digits terms starting with n=1: {0, 1, 46, 508, 4117, 31395, 187533, 854665, 2989094, 7172381, 6481542}. - Zak Seidov, Jun 04 2015
LINKS
MAPLE
G:= proc(d) # to produce all d-digit terms
local L, C, Cc, P, i, x, res;
res:= NULL;
L:= [false, true, false, true, false, false, false, true, false, true];
for C in combinat:-choose([$0..9], d-1) do
for i from 1 to d-1 do
Cc:= [op(C), C[i]];
if convert(Cc, `+`) mod 3 = 0 then next fi;
for P in combinat:-permute(Cc) do
if P[-1] = 0 or not L[P[1]+1] then next fi;
x:= add(P[i]*10^(i-1), i=1..nops(P));
if isprime(x) then res:= res, x fi;
od
od
od;
sort([res]);
end proc:
seq(op(G(d)), d=1..5); # Robert Israel, Jun 04 2015
MATHEMATICA
fQ[n_]:=Length[IntegerDigits[n]]-Length[Union[IntegerDigits[n]]]==1; Select[Prime@Range[21713], fQ[#]&] (* Ivan N. Ianakiev, Sep 25 2015 *)
PROG
(PARI) lista(nn) = {forprime(p=2, nn, my(d = digits(p)); if (#vecsort(d, , 8) == #d-1, print1(p, ", ")); ); } \\ Michel Marcus, Dec 18 2014
CROSSREFS
Sequence in context: A158051 A091366 A073064 * A180421 A176179 A176196
KEYWORD
nonn,fini,base
AUTHOR
EXTENSIONS
Definition clarified by R. J. Mathar, May 05 2010
STATUS
approved