login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155078
The representation of n=1,2,3,... in binary is a divisor of the same representation in another base. The sequence is the first such base.
3
3, 4, 5, 4, 3, 3, 4, 4, 5, 3, 13, 3, 15, 4, 8, 4, 8, 5, 21, 8, 4, 22, 25, 6, 27, 26, 5, 4, 31, 3, 4, 4, 8, 8, 32, 3, 39, 38, 38, 8, 43, 4, 45, 22, 8, 23, 19, 6, 9, 50, 8, 26, 24, 5, 46, 4, 5, 29, 18, 3, 63, 4, 5, 4, 7, 6, 69, 8, 25, 30, 47, 6, 4, 74, 17, 38, 79, 12, 60, 8, 79, 82, 85, 4, 8, 43
OFFSET
1,1
COMMENTS
The pattern of solutions for each binary representation is notable. For 1001= decimal 9, the bases as solutions are 5,8,11,14,... whereas the pattern for 111=decimal 7 is 4,9,11,16,18,....
The binary representation of n corresponds to the unique polynomial p_n(x) with coefficients in {0,1} such that p(2) = n. a(n) is the least x >= 3 such that p_n(x) == 0 mod n. Thus 3 <= a(n) <= n + 2. - Robert Israel, Dec 15 2014
From Rémy Sigrist, Mar 15 2017: (Start)
If n is even then a(n) <= max(4, n).
If n is odd then a(n) <= n + 2.
If n is odd then n and a(n) are coprime.
If a(n)=4 then n belongs to A062846.
(End)
LINKS
FORMULA
It is simply a matter of converting a binary number to another base to see if the resulting number is a multiple of n. The lowest other base is listed.
EXAMPLE
The n-th term is solved by converting the decimal n to binary then asking to what other base is this representation a multiple of n. For the 5th term, the binary representation is 101; if this is converted to base 3, 101 = 9+0+1 = 10, a multiple of 5. The base 3 is the first base producing a multiple of n: the 5th term is therefore 3.
MAPLE
A155078 := proc(n) local bdgs, b ; bdgs := convert(n, base, 2) ; for b from 3 do add(op(i, bdgs)*b^(i-1), i=1..nops(bdgs)) ; if mod n = 0 then RETURN(b); fi; od: end: seq(A155078(n), n=1..100) ; # R. J. Mathar, Mar 14 2009
# second Maple program:
f:= proc(n) local b, L, r, sols;
L:= convert(n, base, 2);
r:= add(L[i]*b^(i-1), i=1..nops(L));
sols:= subs(0=n, 1=n+1, 2=n+2, map(t -> rhs(op(t)), {msolve(r, n)})) ;
min(sols);
end proc:
3, seq(f(n), n=2..100); # Robert Israel, Dec 15 2014
CROSSREFS
Cf. A062846.
Sequence in context: A014238 A275719 A014250 * A332420 A115051 A094634
KEYWORD
base,easy,nonn
AUTHOR
J. M. Bergot, Jan 19 2009
EXTENSIONS
Corrected and extended by R. J. Mathar, Mar 14 2009
STATUS
approved