login
A176176
Numbers k such that 2^(k-1) == 4^(k-1) (mod k).
2
1, 2, 3, 4, 5, 7, 8, 11, 13, 16, 17, 19, 23, 28, 29, 31, 32, 37, 41, 43, 47, 53, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 112, 113, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167
OFFSET
1,2
COMMENTS
Numbers k such that A062173(k) = A062175(k).
Question: is the sequence (Powers of 2) UNION (odd primes), the union of A000079 and A005408?
The answer to the question is no: 2^(28-1) mod 28 = 4^(28-1) mod 28 = 8. Also, any base-2 Fermat pseudoprime (A001567) is a term of this sequence. - D. S. McNeil, Dec 07 2010
LINKS
MATHEMATICA
Select[Range[200], PowerMod[2, #-1, #]==PowerMod[4, #-1, #]&] (* Harvey P. Dale, Nov 10 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by D. S. McNeil, Dec 07 2010
STATUS
approved