login
A176175
Numbers k such that (2^(k-1) mod k) = number of prime divisors of k (counted with multiplicity).
1
1, 3, 5, 6, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 41, 43, 46, 47, 53, 58, 59, 61, 62, 67, 71, 73, 74, 79, 82, 83, 86, 89, 94, 97, 101, 103, 106, 107, 109, 113, 118, 122, 127, 131
OFFSET
1,2
COMMENTS
Numbers k such that A062173(k) = A001222(k).
FORMULA
A001222(a(n)) = A062173(a(n)).
MAPLE
for n from 1 to 180 do modp(2^(n-1), n) ; if % = numtheory[bigomega](n) then printf("%d, ", n) ; end if; end do: # R. J. Mathar, Dec 07 2010
CROSSREFS
Sequence in context: A281995 A304452 A292763 * A157201 A067351 A067350
KEYWORD
nonn
AUTHOR
STATUS
approved