login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175346
a(n) = Sum_{k=1..n^2} d(k), d(k) = number of divisors of k (A000005).
3
1, 8, 23, 50, 87, 140, 201, 280, 373, 482, 605, 746, 897, 1070, 1261, 1466, 1689, 1932, 2189, 2468, 2761, 3074, 3405, 3764, 4127, 4518, 4925, 5360, 5807, 6276, 6757, 7262, 7789, 8342, 8915, 9502, 10107
OFFSET
1,2
COMMENTS
Generalized sequence: Sum_{k=1..T(n)} d(k). In this sequence T(n)=n^2, in A085831 T(n)=2^n, in A006218 T(n)=n. Other examples not in the OEIS: T(n)=p(n) n-th prime, T(n)=n*(n+1)/2 n-th triangular number, T(n)= F(n) n-th Fibonacci number, etc.
LINKS
FORMULA
a(n) ~ 2n^2 log n. [Charles R Greathouse IV, Aug 21 2011]
a(n) = n^2 + 2*Sum_{k=2..n} floor(n^2/k). - Chai Wah Wu, Oct 24 2023
MATHEMATICA
Table[Sum[DivisorSigma[0, k], {k, 1, n^2}], {n, 1, 80}] (* Carl Najafi, Aug 21 2011 *)
PROG
(PARI) a(n)=sum(k=1, n^2, numdiv(k)) \\ Charles R Greathouse IV, Aug 21 2011
(Python)
def A175346(n): return (m:=n**2)+(sum(m//k for k in range(2, n+1))<<1) # Chai Wah Wu, Oct 24 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Apr 17 2010
EXTENSIONS
More terms from Carl Najafi, Aug 21 2011
STATUS
approved