login
A175316
Decimal expansion of coth(Pi).
2
1, 0, 0, 3, 7, 4, 1, 8, 7, 3, 1, 9, 7, 3, 2, 1, 2, 8, 8, 2, 0, 1, 5, 5, 2, 6, 9, 1, 1, 9, 4, 8, 0, 0, 0, 1, 7, 4, 6, 2, 4, 5, 2, 4, 2, 2, 9, 9, 5, 9, 0, 7, 6, 6, 3, 4, 0, 4, 8, 3, 0, 0, 2, 8, 4, 6, 7, 0, 0, 4, 6, 7, 6, 3, 3, 0, 5, 8, 0, 7, 1, 9, 6, 8, 8, 0, 5, 8, 5, 6, 2, 2, 6, 6, 1, 1, 1, 8, 1, 1, 0, 8, 2, 0, 6, 1, 2, 8, 4
OFFSET
1,4
FORMULA
Equals A175314 divided by A175315.
Equals (exp(tau) + 1)/(exp(tau) - 1), where tau = 2*Pi = A019692. - Peter Luschny, May 22 2021
From Wolfe Padawer, Jan 28 2023: (Start)
Equals Sum_{k>=-oo} 1/(Pi + Pi*k^2).
Equals 1 + Sum_{k>=0} 2*e^(-2*Pi*k - 2*Pi).
Equals 1 + lim_{n->oo} (2*e^(-2*Pi*n))*(e^(2*Pi*n) - 1)/(e^(2*Pi) - 1). (End)
EXAMPLE
1.003741873197321288201552691194800017462452422...
MAPLE
Tau := 2*Pi: Digits := 120: (exp(Tau) + 1)/(exp(Tau) - 1):
evalf(%)*10^110: ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, May 21 2021
MATHEMATICA
RealDigits[Coth[Pi], 10, 110][[1]] (* Georg Fischer, Apr 03 2020 *)
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Apr 01 2010
EXTENSIONS
a(42) ff. corrected by Georg Fischer, Apr 03 2020
STATUS
approved