OFFSET
1,2
COMMENTS
|zeta'(alpha)| > 1 means that s = alpha is a repelling fixed point of zeta(s). As a result, for any initial value s_0 in (1, +oo), s_0 != alpha, the iterated sequence s_0, zeta(s_0), zeta(zeta(s_0)), ... diverges.
Moreover, let s_0 be any real number > alpha, s_n = zeta(s_{n-1}) for n >= 1, then it seems that ... > s_{2n} > s_{2n-2} > ... > s_2 > s_0 > alpha > s_1 > s_3 > ... > s_{2n+1} > ..., and {s_{2n}} diverges to +oo, {s_{2n+1}} converges to 1. Moreover, the divergence of {s_{2n}} and convergence of {s_{2n+1}} should be really fast, see my conjecture in A344428.
EXAMPLE
zeta'(1.83377265168027139624...) = -1.37425243024718990618...
MATHEMATICA
RealDigits[-Zeta'[x /. FindRoot[Zeta[x] == x, {x, 2}, WorkingPrecision -> 120]]][[1]] (* Amiram Eldar, Jun 01 2023 *)
PROG
(PARI) default(realprecision, 100); zeta'(solve(x=1.5, 2, zeta(x)-x))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jianing Song, May 19 2021
STATUS
approved