The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175271 Base-8 pandigital primes 10
 17119607, 17120573, 17121077, 17127839, 17128931, 17132347, 17135413, 17136029, 17136869, 17148349, 17159479, 17164757, 17181683, 17184119, 17185463, 17185981, 17194171, 17196383, 17196733, 17200373, 17202347 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Base-8 pandigital primes must have at least 9 octal digits, since sum(d_i 8^i) = sum(d_i) (mod 7), and 0+1+...+6+7 is divisible by 7. So the smallest ones should be of the form "10123...." in base 8, where "...." is a permutation of "4567". By chance, the identical permutation already yields a prime: a(1)="101234567" in base-8. LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 Alonso Del Arte, Classifications of prime numbers - By representation in specific bases, OEIS Wiki as of Mar 19 2010. M. F. Hasler, Reply to A. Del Arte's post "Pandigital primes in bases 8,12,..." on the SeqFan list, Mar 19 2010. PROG (PARI) pdp( b=8/*base*/, c=199/* # of terms to produce */) = { my(t, a=[], bp=vector(b, i, b^(b-i))~, offset=b*(b^b-1)/(b-1)); for( i=1, b-1, offset+=b^b; for( j=0, b!-1, isprime(t=offset-numtoperm(b, j)*bp) | next; #(a=concat(a, t))

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 18:38 EDT 2021. Contains 343586 sequences. (Running on oeis4.)