

A175271


Base8 pandigital primes


10



17119607, 17120573, 17121077, 17127839, 17128931, 17132347, 17135413, 17136029, 17136869, 17148349, 17159479, 17164757, 17181683, 17184119, 17185463, 17185981, 17194171, 17196383, 17196733, 17200373, 17202347
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Base8 pandigital primes must have at least 9 octal digits, since sum(d_i 8^i) = sum(d_i) (mod 7), and 0+1+...+6+7 is divisible by 7. So the smallest ones should be of the form "10123...." in base 8, where "...." is a permutation of "4567". By chance, the identical permutation already yields a prime: a(1)="101234567" in base8.


LINKS



PROG

(PARI) pdp( b=8/*base*/, c=199/* # of terms to produce */) = { my(t, a=[], bp=vector(b, i, b^(bi))~, offset=b*(b^b1)/(b1)); for( i=1, b1, offset+=b^b; for( j=0, b!1, isprime(t=offsetnumtoperm(b, j)*bp)  next; #(a=concat(a, t))<c  return(vecsort(a))))} /* NOTE: Due to the implementation of numtoperm, the returned list may be incomplete towards its end. Thus computation of more than the required # of terms is recommended. [The initial digits of the base8 expansion of the terms allow one to know up to where it is complete.] You may use a construct of the form: vecextract(pdp(8, 999), "1..30")) */


CROSSREFS

Cf. A050288, A138837, A175272, A175273, A175274, A175275, A175276, A175277, A175278, A175279, A175280.


KEYWORD

nonn,base


AUTHOR



EXTENSIONS



STATUS

approved



