

A175272


Base12 pandigital primes.


8



8989787252711, 8989787311891, 8989787313343, 8989787458763, 8989787707627, 8989787709211, 8989787710927, 8989787764211, 8989787806099, 8989787810719, 8989787959879, 8989787974883, 8989787992747, 8989787999743, 8989788058351
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

These numbers need to have at least 13 digits in base 12 since any permutation of the digits 0,...,9,A,B will result in a number divisible by 11. For the same reason, it must be digit different from 0 which is repeated. Thus the smallest terms in this sequence are written "10123456....." in base 12, where ..... is a permutation of {7,8,9,A,B}.
Note: Due to the implementation of numtoperm(), the PARI script will not necessarily print the terms in the correct order. In some cases, more than the desired number of terms have to be calculated, and vecsort() to be used to get the correct sequence.  M. F. Hasler, May 27 2010


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000
Alonso Del Arte, Classifications of prime numbers  By representation in specific bases, OEIS Wiki as of Mar 19 2010.
M. F. Hasler, Reply to A. Del Arte's post "Pandigital primes in bases 8,12,..." on the SeqFan list, Mar 19 2010.


EXAMPLE

8989787252711, 8989787311891, 8989787313343, 8989787458763, ... are written "101234568A79B", "10123456B8A97", "10123456B98A7", "1012345769A8B", ... in base 12 (where A=digit 10, B=digit 11).


PROG

(PARI) pdp( b=12/* base */, c=20/* #terms to print */)={ my(t, bp=vector(b, i, b^(bi))~, offset=b*(b^b1)/(b1) /* to fix order of permutations CBA..321 => 012...9AB */); for( i=1, b1, /* add initial digit */ offset += b^b; for( j=0, b!1, isprime(t=offsetnumtoperm(b, j)*bp) & !print1(t", ") & !c & return))}


CROSSREFS

Cf. A050288, A138837, A175271, A175273, A175274, A175275, A175276, A175277, A175278, A175279, A175280.
Sequence in context: A057074 A017412 A017532 * A104833 A112432 A230100
Adjacent sequences: A175269 A175270 A175271 * A175273 A175274 A175275


KEYWORD

nonn,base


AUTHOR

M. F. Hasler, Mar 19 2010


EXTENSIONS

Order of the terms corrected by M. F. Hasler, May 27 2010


STATUS

approved



