login
A174332
Least prime q of which prime(n) is a proper binary substring.
4
5, 7, 11, 23, 23, 29, 71, 79, 47, 59, 127, 101, 83, 107, 191, 107, 239, 251, 269, 199, 293, 317, 167, 179, 353, 229, 359, 431, 439, 227, 383, 263, 787, 557, 599, 607, 631, 419, 1447, 347, 359, 727, 383, 449, 709, 797, 467, 479, 739, 919, 467, 479, 967, 503, 769
OFFSET
1,1
COMMENTS
a(n) = A208238(A000040(n)) = A208241(A000040(n)). - Reinhard Zumkeller, Feb 14 2013
LINKS
EXAMPLE
a(1)=5 since 2_10 = 10_2 is a substring of 5_10 = 101_2.
MATHEMATICA
f[n_] := Block[{k = n + 1, p = StringTake[ ToString@ IntegerDigits[ Prime@n, 2], {2, -2}]}, While[q = StringTake[ ToString@ IntegerDigits[ Prime@k, 2], {2, -2}]; StringPosition[q, p] == {}, k++ ]; Prime@k]; Array[f, 55]
PROG
(Haskell)
a174332 = a208238 . a000040 -- Reinhard Zumkeller, Feb 14 2013
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Mar 15 2010
STATUS
approved