login
A174330
Least positive x such that g^x = x (mod p) for g=A174329(n), where p=prime(n).
2
3, 2, 7, 10, 5, 4, 2, 6, 28, 16, 4, 10, 8, 36, 28, 43, 45, 2, 53, 16, 35, 18, 45, 24, 50, 36, 106, 62, 97, 23, 2, 75, 41, 72, 139, 149, 112, 27, 100, 51, 180, 117, 26, 159, 52, 66, 190, 195, 196, 180, 30, 143, 97, 209, 141, 65, 66, 251, 219, 254, 160, 151, 36, 29, 232, 223
OFFSET
3,1
COMMENTS
The number x is called a fixed point of the discrete logarithm with base g. The number of fixed points for each prime p is tabulated in A084793.
MATHEMATICA
Table[p=Prime[n]; coprimes=Select[Range[p-1], GCD[ #, p-1] == 1 &]; primRoots = PowerMod[PrimitiveRoot[p], coprimes, p]; g=Select[primRoots, MemberQ[PowerMod[ #, Range[p-1], p] - Range[p-1], 0] &, 1][[1]]; Position[PowerMod[g, Range[p-1], p] - Range[p-1], 0, 1, 1][[1, 1]], {n, 3, 100}]
CROSSREFS
Sequence in context: A018891 A034423 A193859 * A099329 A182871 A143329
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 18 2010
EXTENSIONS
Name edited by M. F. Hasler, Apr 20 2024
STATUS
approved