%I
%S 3,2,7,10,5,4,2,6,28,16,4,10,8,36,28,43,45,2,53,16,35,18,45,24,50,36,
%T 106,62,97,23,2,75,41,72,139,149,112,27,100,51,180,117,26,159,52,66,
%U 190,195,196,180,30,143,97,209,141,65,66,251,219,254,160,151,36,29,232,223
%N Least number x such that g^x = x (mod p) for g=A174329(n), where p=prime(n).
%C The number x is called a fixed point of the discrete logarithm with base g. The number of fixed points for each prime p is tabulated in A084793.
%t Table[p=Prime[n]; coprimes=Select[Range[p1], GCD[ #,p1] == 1 &]; primRoots = PowerMod[PrimitiveRoot[p], coprimes, p]; g=Select[primRoots, MemberQ[PowerMod[ #, Range[p1], p]  Range[p1], 0] &, 1][[1]]; Position[PowerMod[g, Range[p1], p]  Range[p1], 0, 1, 1][[1,1]], {n,3,100}]
%K nonn
%O 3,1
%A _T. D. Noe_, Mar 18 2010
