OFFSET
1,2
COMMENTS
If you graph a(n) versus n, an interesting pattern emerges. As you go farther along the n-axis, greater are the number of Sophie Germain primes, on average, within each interval obtained. The smallest count of 1 occurs twice: between squares of (2,3) and (11,13). I suspect the number of Sophie Germain primes within each interval will never be zero. If one could prove that there is at least 1 Sophie Germain prime within each interval, this would imply that Sophie Germain primes are infinite.
LINKS
J. S. Cheema, Table of n, a(n) for n = 1..10000
Wikipedia, Sophie Germain Primes
EXAMPLE
For n = 1, we consider the interval [2^2, 3^2], within which is one Sophie Germain prime, 5. Thus a(1) = 1.
PROG
(Sage) A173897 = lambda n: len([p for p in prime_range(nth_prime(n)**2, nth_prime(n+1)**2) if is_prime(2*p+1)]) # D. S. McNeil, Dec 02 2010
(PARI) is_a005384(n) = ispseudoprime(2*n+1)
a(n) = my(i=0); forprime(q=prime(n)^2, prime(n+1)^2, if(is_a005384(q) && q < prime(n+1)^2, i++)); i \\ Felix Fröhlich, Sep 04 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaspal Singh Cheema, Mar 01 2010
EXTENSIONS
Edited by D. S. McNeil, Dec 02 2010
STATUS
approved