login
A152593
Least k(n) such that 6*k(n)*2^p(n)*(2^p(n)-1)-1 or 6*k(n)*2^p(n)*(2^p(n)-1)+1 (or both) is prime, where p(i)=i-th prime
1
1, 1, 1, 2, 2, 4, 1, 7, 16, 5, 1, 44, 5, 1, 3, 14, 2, 11, 52, 2, 5, 6, 8, 26, 63, 30, 23, 40, 5, 19, 2, 14, 19, 16, 44, 47, 4, 18, 28, 86, 43, 109, 71, 106, 41, 142, 6, 8, 5, 100, 42, 103, 11, 56, 151, 62, 44, 90, 6, 49, 58, 31, 25, 92, 26, 66, 14, 29, 49, 119, 96, 127, 16, 70, 117
OFFSET
1,4
COMMENTS
As n increases sum k(n) for i=1 to n / sum p(n) for i=1 to n tends to log(2)/3 for the first 700 primes 0<k(n)<2*p(n)*log(2)
LINKS
EXAMPLE
6*1*2^2*(2^2-1)-1=71 prime as 73 so k(1)=1 6*1*2^3*(2^3-1)+1=337 prime so k(2)=1 6*1*2^5*(2^5-1)+1=5953 prime so k(3)=1
CROSSREFS
Sequence in context: A204595 A338823 A173897 * A243548 A105478 A114427
KEYWORD
nonn
AUTHOR
Pierre CAMI, Dec 09 2008
STATUS
approved