login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173792
Numbers of the form x^2 + y^2 + z^2 = phi(x*y*z) + sigma(x*y*z).
1
9, 14, 19, 51, 99, 243, 339, 579, 723, 1059, 1640, 1683, 1923, 2739, 3363, 3699, 4419, 5619, 6963, 7443, 8979, 10083, 10659, 12483, 13779, 15843, 18819, 20403, 21219, 22899, 23763, 25539, 32259, 34323, 37539, 38643, 44403, 45603, 49299, 53139, 55779
OFFSET
1,1
COMMENTS
Phi = A000010 is Euler's totient and sigma = A000203 is the sum of divisors.
Let p prime, then (x,y,z) = (1,p,p),(p,1,p),(p,p,1) are solutions because phi(p^2) + sigma(p^2) = (p-1)p + p(p+1)+1 = 2p^2 + 1.
LINKS
EXAMPLE
9 is in the sequence because for (x,y,z) = (1,2,2), x^2 + y^2 + z^2 = 9, phi(4)=2, sigma(4)=7, and phi(4) + sigma(4) = 9 ;
1640 is in the sequence because for (x,y,z) = (6,2,40), x^2 + y^2 + z^2 = 1640, phi(480)=128, sigma(480)=1512, and phi(480) + sigma(480) = 1640.
MAPLE
isA173792 := proc(n)
for x from 1 do
if x^2 > n then
return false;
end if;
for y from x do
if x^2+y^2 > n then
break;
end if;
if issqr(n-x^2-y^2) then
z := sqrt(n-x^2-y^2) ;
p := x*y*z ;
if n = numtheory[sigma](p) + numtheory[phi](p) then
return true;
end if;
end if;
end do:
end do:
end proc:
for n from 1 do
if isA173792(n) then
printf("%d, \n", n) ;
end if;
end do: # R. J. Mathar, Jul 08 2012
CROSSREFS
Sequence in context: A171123 A327896 A302056 * A332588 A034703 A006624
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 24 2010
STATUS
approved