login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form x^2 + y^2 + z^2 = phi(x*y*z) + sigma(x*y*z).
1

%I #11 Jul 09 2012 12:20:50

%S 9,14,19,51,99,243,339,579,723,1059,1640,1683,1923,2739,3363,3699,

%T 4419,5619,6963,7443,8979,10083,10659,12483,13779,15843,18819,20403,

%U 21219,22899,23763,25539,32259,34323,37539,38643,44403,45603,49299,53139,55779

%N Numbers of the form x^2 + y^2 + z^2 = phi(x*y*z) + sigma(x*y*z).

%C Phi = A000010 is Euler's totient and sigma = A000203 is the sum of divisors.

%C Let p prime, then (x,y,z) = (1,p,p),(p,1,p),(p,p,1) are solutions because phi(p^2) + sigma(p^2) = (p-1)p + p(p+1)+1 = 2p^2 + 1.

%H Donovan Johnson, <a href="/A173792/b173792.txt">Table of n, a(n) for n = 1..1000</a>

%e 9 is in the sequence because for (x,y,z) = (1,2,2), x^2 + y^2 + z^2 = 9, phi(4)=2, sigma(4)=7, and phi(4) + sigma(4) = 9 ;

%e 1640 is in the sequence because for (x,y,z) = (6,2,40), x^2 + y^2 + z^2 = 1640, phi(480)=128, sigma(480)=1512, and phi(480) + sigma(480) = 1640.

%p isA173792 := proc(n)

%p for x from 1 do

%p if x^2 > n then

%p return false;

%p end if;

%p for y from x do

%p if x^2+y^2 > n then

%p break;

%p end if;

%p if issqr(n-x^2-y^2) then

%p z := sqrt(n-x^2-y^2) ;

%p p := x*y*z ;

%p if n = numtheory[sigma](p) + numtheory[phi](p) then

%p return true;

%p end if;

%p end if;

%p end do:

%p end do:

%p end proc:

%p for n from 1 do

%p if isA173792(n) then

%p printf("%d,\n",n) ;

%p end if;

%p end do: # _R. J. Mathar_, Jul 08 2012

%K nonn

%O 1,1

%A _Michel Lagneau_, Feb 24 2010