The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A173791 a(n) is The number of (0,1)-matrices, A = (a_{ij}), of size (3n) X (2n) such that each row has exactly two 1's and each column has exactly three 1's and with the restriction that no 1 stands on the line from a_{11} to a_{22}. 2
 1, 518, 15960915, 4828311488700, 6893870205562754400, 32978529689054529966170400, 428543560497255413435939747983950, 13079873402738505705048288877402275168000, 841990488872507644104617260743341546194585260000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 1..88 (terms 1..50 from G. C. Greubel) FORMULA a(n) = Sum_{k=0..2n} ( Sum_{s=0..k} ( Sum_{j=0..2*n-k} ( Sum_{t=0..min(j, k-s)} ( (-1)^(k+s+j)*B(k, s)*B(2*n, k)*B(j, t)*B(2*n-k, j)*B(3*n-k, j)*j!*(6*n-k-2*j-s)!/(B(2*n-k, t)*2^(3*n-s-t)*6^(2*n-k-j+t)) )))), where B = binomial. a(n) ~ sqrt(Pi) * 2^(n+1) * 3^(4*n + 1/2) * n^(6*n + 1/2) / exp(6*n+3). - Vaclav Kotesovec, Oct 21 2023 MATHEMATICA a[n_]:= a[n]= With[{B=Binomial}, Sum[(-1)^(k+s+j)*B[k, s]*B[2*n, k]*B[j, t]*B[2*n-k, j]*B[3*n-k, j]*j!*(6*n-k-2*j-s)!/(B[2*n-k, t]*2^(3*n-s-t)*6^(2*n-k-j+t)), {k, 0, 2*n}, {s, 0, k}, {j, 0, 2*n-k}, {t, 0, Min[j, k-s]}]]; Table[a[n], {n, 12}] (* G. C. Greubel, Jul 13 2021 *) PROG (Sage) B = binomial; f = factorial; @CachedFunction def c(n, k): return sum( sum( sum( (-1)^(s+j)*B(k, s)*B(j, t)*B(2*n-k, j)*B(3*n-k, j)*f(j)*f(6*n-k-2*j-s)*2^s*6^j/(B(2*n-k, t)*3^t) for t in [0..min(k-s, j)] ) for j in [0..2*n-k]) for s in [0..k] ) def a(n): return sum( (-1)^k*B(2*n, k)*c(n, k)/(8^n*6^(2*n-k)) for k in [0..2*n] ) [a(n) for n in (1..12)] # G. C. Greubel, Jul 13 2021 CROSSREFS Cf. A173789, A173790. Sequence in context: A236642 A253726 A293085 * A345587 A345845 A051983 Adjacent sequences: A173788 A173789 A173790 * A173792 A173793 A173794 KEYWORD nonn AUTHOR Shanzhen Gao, Feb 24 2010 EXTENSIONS Edited by G. C. Greubel, Jul 13 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 00:36 EDT 2024. Contains 372954 sequences. (Running on oeis4.)