The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173791 a(n) is The number of (0,1)-matrices, A = (a_{ij}), of size (3n) X (2n) such that each row has exactly two 1's and each column has exactly three 1's and with the restriction that no 1 stands on the line from a_{11} to a_{22}. 2
1, 518, 15960915, 4828311488700, 6893870205562754400, 32978529689054529966170400, 428543560497255413435939747983950, 13079873402738505705048288877402275168000, 841990488872507644104617260743341546194585260000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..88 (terms 1..50 from G. C. Greubel)
FORMULA
a(n) = Sum_{k=0..2n} ( Sum_{s=0..k} ( Sum_{j=0..2*n-k} ( Sum_{t=0..min(j, k-s)} ( (-1)^(k+s+j)*B(k, s)*B(2*n, k)*B(j, t)*B(2*n-k, j)*B(3*n-k, j)*j!*(6*n-k-2*j-s)!/(B(2*n-k, t)*2^(3*n-s-t)*6^(2*n-k-j+t)) )))), where B = binomial.
a(n) ~ sqrt(Pi) * 2^(n+1) * 3^(4*n + 1/2) * n^(6*n + 1/2) / exp(6*n+3). - Vaclav Kotesovec, Oct 21 2023
MATHEMATICA
a[n_]:= a[n]= With[{B=Binomial}, Sum[(-1)^(k+s+j)*B[k, s]*B[2*n, k]*B[j, t]*B[2*n-k, j]*B[3*n-k, j]*j!*(6*n-k-2*j-s)!/(B[2*n-k, t]*2^(3*n-s-t)*6^(2*n-k-j+t)), {k, 0, 2*n}, {s, 0, k}, {j, 0, 2*n-k}, {t, 0, Min[j, k-s]}]];
Table[a[n], {n, 12}] (* G. C. Greubel, Jul 13 2021 *)
PROG
(Sage)
B = binomial;
f = factorial;
@CachedFunction
def c(n, k): return sum( sum( sum( (-1)^(s+j)*B(k, s)*B(j, t)*B(2*n-k, j)*B(3*n-k, j)*f(j)*f(6*n-k-2*j-s)*2^s*6^j/(B(2*n-k, t)*3^t) for t in [0..min(k-s, j)] ) for j in [0..2*n-k]) for s in [0..k] )
def a(n): return sum( (-1)^k*B(2*n, k)*c(n, k)/(8^n*6^(2*n-k)) for k in [0..2*n] )
[a(n) for n in (1..12)] # G. C. Greubel, Jul 13 2021
CROSSREFS
Sequence in context: A236642 A253726 A293085 * A345587 A345845 A051983
KEYWORD
nonn
AUTHOR
Shanzhen Gao, Feb 24 2010
EXTENSIONS
Edited by G. C. Greubel, Jul 13 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 00:36 EDT 2024. Contains 372954 sequences. (Running on oeis4.)