login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173775
Number of ways to place 5 nonattacking queens on an n X n toroidal board
6
0, 0, 0, 0, 10, 0, 882, 13312, 85536, 561440, 2276736, 9471744, 27991470, 85725696, 209107890, 525062144, 1116665944, 2437807104, 4691672964, 9234168960, 16462896030, 29919532544, 50215537658, 85687824384, 136944081500
OFFSET
1,5
FORMULA
a(n) = (1/120)*n^10 - (1/3)*n^9 + (143/24)*n^8 - (373/6*n^7) + (99377/240)*n^6 - (3603/2)*n^5 + (119627/24)*n^4 - (23833/3)*n^3 + (16342/3)*n^2 + ((1/24)*n^8 - (3/2)*n^7 + (1111/48)*n^6 - (391/2)*n^5 + (7595/8)*n^4 - 2487*n^3 + (8032/3)*n^2)*(-1)^n + ((9/2)*n^4 - 78*n^3 + 374*n^2)*cos(Pi*n/2) + ((8/3)*n^4 - (128/3)*n^3 + (656/3)*n^2)*cos(2*Pi*n/3) + (80/3)*n^2*cos(Pi*n/3) + (16/5)*n^2*cos(2*Pi*n/5) + (16/5)*n^2*cos(Pi*n/5)*(-1)^n.
Recurrence: a(n) = -3a(n-1) - 5a(n-2) - 5a(n-3) + 2a(n-4) + 17a(n-5) + 37a(n-6) + 49a(n-7) + 35a(n-8) - 16a(n-9) - 101a(n-10) - 185a(n-11) - 215a(n-12) - 139a(n-13) + 56a(n-14) + 321a(n-15) + 544a(n-16) + 588a(n-17) + 368a(n-18) - 99a(n-19) - 656a(n-20) - 1069a(n-21) - 1111a(n-22) - 689a(n-23) + 84a(n-24) + 929a(n-25) + 1488a(n-26) + 1506a(n-27) + 939a(n-28) - 939a(n-30) - 1506a(n-31) - 1488a(n-32) - 929a(n-33) - 84a(n-34) + 689a(n-35) + 1111a(n-36) + 1069a(n-37) + 656a(n-38) + 99a(n-39)-368a(n-40) - 588a(n-41) - 544a(n-42) - 321a(n-43) - 56a(n-44) + 139a(n-45) + 215a(n-46) + 185a(n-47) + 101a(n-48) + 16a(n-49) - 35a(n-50) - 49a(n-51) - 37a(n-52) - 17a(n-53) - 2a(n-54) + 5a(n-55) + 5a(n-56) + 3a(n-57) + a(n-58).
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Vaclav Kotesovec, Feb 24 2010
STATUS
approved