login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172517
Number of ways to place 2 nonattacking queens on an n X n toroidal board.
9
0, 0, 0, 32, 100, 288, 588, 1152, 1944, 3200, 4840, 7200, 10140, 14112, 18900, 25088, 32368, 41472, 51984, 64800, 79380, 96800, 116380, 139392, 165000, 194688, 227448, 264992, 306124, 352800, 403620, 460800, 522720, 591872, 666400, 749088, 837828
OFFSET
1,4
FORMULA
a(n) = n^2*(n-2)^2/2 if n is even and a(n) = n^2*(n-1)(n-3)/2 if n is odd.
G.f.: -4*x^4*(x^3+6*x^2+9*x+8) / ((x-1)^5*(x+1)^3). - Colin Barker, Jan 09 2013
a(n) = 2*a(n-1)+2*a(n-2)-6*a(n-3)+6*a(n-5)-2*a(n-6)-2*a(n-7)+a(n-8). - Wesley Ivan Hurt, May 28 2021
MATHEMATICA
CoefficientList[Series[- 4 x^3 (x^3 + 6 x^2 + 9 x + 8) / ((x - 1)^5 (x + 1)^3), {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)
LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 0, 0, 32, 100, 288, 588, 1152}, 40] (* Harvey P. Dale, Sep 22 2015 *)
CROSSREFS
Sequence in context: A192293 A188862 A228686 * A194645 A134845 A167982
KEYWORD
nonn,nice,easy
AUTHOR
Vaclav Kotesovec, Feb 05 2010
STATUS
approved