Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 May 28 2021 13:20:16
%S 0,0,0,32,100,288,588,1152,1944,3200,4840,7200,10140,14112,18900,
%T 25088,32368,41472,51984,64800,79380,96800,116380,139392,165000,
%U 194688,227448,264992,306124,352800,403620,460800,522720,591872,666400,749088,837828
%N Number of ways to place 2 nonattacking queens on an n X n toroidal board.
%H Vincenzo Librandi, <a href="/A172517/b172517.txt">Table of n, a(n) for n = 1..1000</a>
%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Number of ways of placing non-attacking queens and kings on boards of various sizes</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-6,0,6,-2,-2,1).
%F a(n) = n^2*(n-2)^2/2 if n is even and a(n) = n^2*(n-1)(n-3)/2 if n is odd.
%F G.f.: -4*x^4*(x^3+6*x^2+9*x+8) / ((x-1)^5*(x+1)^3). - _Colin Barker_, Jan 09 2013
%F a(n) = 2*a(n-1)+2*a(n-2)-6*a(n-3)+6*a(n-5)-2*a(n-6)-2*a(n-7)+a(n-8). - _Wesley Ivan Hurt_, May 28 2021
%t CoefficientList[Series[- 4 x^3 (x^3 + 6 x^2 + 9 x + 8) / ((x - 1)^5 (x + 1)^3), {x, 0, 50}], x] (* _Vincenzo Librandi_, May 29 2013 *)
%t LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{0,0,0,32,100,288,588,1152},40] (* _Harvey P. Dale_, Sep 22 2015 *)
%Y Cf. A007705, A036464.
%K nonn,nice,easy
%O 1,4
%A _Vaclav Kotesovec_, Feb 05 2010