|
|
A173731
|
|
a(n) = a(n-1) * (11*a(n-1) - a(n-2)) / (a(n-1) + 4*a(n-2)), a(0) = a(1) = 0, a(2) = 1.
|
|
1
|
|
|
0, 0, 1, 11, 88, 638, 4466, 30856, 212135, 1455685, 9981840, 68428140, 469043796, 3214953456, 22035826813, 151036348463, 1035219958696, 7095506886986, 48633337477670, 333337879614520, 2284731883069955, 15659785467455305
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x^2 / ((1 - x) * (1 - 3*x + x^2) * (1 - 7*x + x^2)) = ( 4 / (1 - x) - 5 * (1 - x) / (1 - 3*x + x^2) + (1 - x) / (1 - 7*x + x^2) ) / 20.
a(n) = 11*a(n-1) - 33*a(n-2) + 33*a(n-3) - 11*a(n-4) + a(n-5).
a(n) = (12 + Fibonacci(4*n + 1) + Fibonacci(4*n + 3) - 15*Fibonacci[2*n + 1] ) / 60. (End)
|
|
EXAMPLE
|
x^2 + 11*x^3 + 88*x^4 + 638*x^5 + 4466*x^6 + 30856*x^7 + 212135*x^8 + ...
|
|
MATHEMATICA
|
Table[(4 + Fibonacci[4*n + 1]/3 + Fibonacci[4*n + 3]/3 - 5*Fibonacci[2*n + 1])/20, {n, 0, 25}] (* or *) LinearRecurrence[{11, -33, 33, -11, 1}, {0, 0, 1, 11, 88}, 25] (* G. C. Greubel, Nov 29 2016 *)
|
|
PROG
|
(PARI) {a(n) = (4 + fibonacci(4*n + 1)/3 + fibonacci(4*n + 3)/3 - 5 * fibonacci(2*n + 1)) / 20}
(Magma) [(4+Fibonacci(4*n+1)/3+Fibonacci(4*n + 3)/3-5* Fibonacci(2*n+1)) / 20: n in [0..25]]; // Vincenzo Librandi, Nov 30 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|