login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173192
a(n) = binomial(n + 7, 7)*9^n.
3
1, 72, 2916, 87480, 2165130, 46766808, 911952756, 16415149608, 277005649635, 4432090394160, 67810983030648, 998670840996816, 14231059484204628, 197045439012064080, 2660113426662865080, 35113497231949819056, 454280870438350784037, 5772039294981398197176
OFFSET
0,2
COMMENTS
Number of n-permutations (n>=7) of 10 objects p, r, q, u, v, w, z, x, y, z with repetition allowed, containing exactly 7 u's.
LINKS
Index entries for linear recurrences with constant coefficients, signature (72,-2268,40824,-459270,3306744,-14880348,38263752,-43046721).
FORMULA
a(n) = C(n + 7, 7)*9^n.
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 16515072*log(9/8) - 19451943/10.
Sum_{n>=0} (-1)^n/a(n) = 63000000*log(10/9) - 13275423/2. (End)
MAPLE
A173192:=n->binomial(n+7, 7)*9^n: seq(A173192(n), n=0..25); # Wesley Ivan Hurt, Jul 24 2017
MATHEMATICA
Table[Binomial[n + 7, 7]*9^n, {n, 0, 20}]
PROG
(Magma) [Binomial(n+7, 7)*9^n: n in [0..20]]; // Vincenzo Librandi, Oct 13 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Feb 12 2010
STATUS
approved