OFFSET
8,2
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
LINKS
G. C. Greubel, Table of n, a(n) for n = 8..440
FORMULA
E.g.f.: ((x/(1-x))^8)/8!.
a(n) = (n!/8!)*binomial(n-1, 8-1).
If we define f(n,i,x) = Sum_{k=i..n}(Sum_{j=i..k} (binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) ) ) then a(n) = (-1)^n*f(n,8,-8), (n>=8). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=8} 1/a(n) = 61096*(gamma - Ei(1)) + 54544*e - 338732/5, where gamma = A001620, Ei(1) = A091725 and e = A001113.
Sum_{n>=8} (-1)^n/a(n) = 2107448*(gamma - Ei(-1)) - 1257760/e - 6080436/5, where Ei(-1) = -A099285. (End)
MATHEMATICA
Table[(n-8)!*Binomial[n-1, 7]*Binomial[n, 8], {n, 8, 35}] (* G. C. Greubel, May 10 2021 *)
PROG
(Magma) [Factorial(n-8)*Binomial(n, 8)*Binomial(n-1, 7): n in [8..35]]; // G. C. Greubel, May 10 2021
(Sage) [factorial(n-8)*binomial(n, 8)*binomial(n-1, 7) for n in (8..35)] # G. C. Greubel, May 10 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 23 2005
STATUS
approved