login
A111598
Lah numbers: a(n) = n!*binomial(n-1,7)/8!.
3
1, 72, 3240, 118800, 3920400, 122316480, 3710266560, 111307996800, 3339239904000, 100919250432000, 3088129063219200, 96012739965542400, 3040403432242176000, 98228418580131840000, 3241537813144350720000
OFFSET
8,2
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
LINKS
FORMULA
E.g.f.: ((x/(1-x))^8)/8!.
a(n) = (n!/8!)*binomial(n-1, 8-1).
If we define f(n,i,x) = Sum_{k=i..n}(Sum_{j=i..k} (binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) ) ) then a(n) = (-1)^n*f(n,8,-8), (n>=8). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=8} 1/a(n) = 61096*(gamma - Ei(1)) + 54544*e - 338732/5, where gamma = A001620, Ei(1) = A091725 and e = A001113.
Sum_{n>=8} (-1)^n/a(n) = 2107448*(gamma - Ei(-1)) - 1257760/e - 6080436/5, where Ei(-1) = -A099285. (End)
MATHEMATICA
Table[(n-8)!*Binomial[n-1, 7]*Binomial[n, 8], {n, 8, 35}] (* G. C. Greubel, May 10 2021 *)
PROG
(Magma) [Factorial(n-8)*Binomial(n, 8)*Binomial(n-1, 7): n in [8..35]]; // G. C. Greubel, May 10 2021
(Sage) [factorial(n-8)*binomial(n, 8)*binomial(n-1, 7) for n in (8..35)] # G. C. Greubel, May 10 2021
CROSSREFS
Column 8 of unsigned A008297 and A111596.
Column 7 of A111597.
Sequence in context: A173192 A004366 A004389 * A116312 A111782 A060507
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 23 2005
STATUS
approved