login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111598
Lah numbers: a(n) = n!*binomial(n-1,7)/8!.
3
1, 72, 3240, 118800, 3920400, 122316480, 3710266560, 111307996800, 3339239904000, 100919250432000, 3088129063219200, 96012739965542400, 3040403432242176000, 98228418580131840000, 3241537813144350720000
OFFSET
8,2
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
LINKS
FORMULA
E.g.f.: ((x/(1-x))^8)/8!.
a(n) = (n!/8!)*binomial(n-1, 8-1).
If we define f(n,i,x) = Sum_{k=i..n}(Sum_{j=i..k} (binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) ) ) then a(n) = (-1)^n*f(n,8,-8), (n>=8). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=8} 1/a(n) = 61096*(gamma - Ei(1)) + 54544*e - 338732/5, where gamma = A001620, Ei(1) = A091725 and e = A001113.
Sum_{n>=8} (-1)^n/a(n) = 2107448*(gamma - Ei(-1)) - 1257760/e - 6080436/5, where Ei(-1) = -A099285. (End)
MATHEMATICA
Table[(n-8)!*Binomial[n-1, 7]*Binomial[n, 8], {n, 8, 35}] (* G. C. Greubel, May 10 2021 *)
PROG
(Magma) [Factorial(n-8)*Binomial(n, 8)*Binomial(n-1, 7): n in [8..35]]; // G. C. Greubel, May 10 2021
(Sage) [factorial(n-8)*binomial(n, 8)*binomial(n-1, 7) for n in (8..35)] # G. C. Greubel, May 10 2021
CROSSREFS
Column 8 of unsigned A008297 and A111596.
Column 7 of A111597.
Sequence in context: A173192 A004366 A004389 * A116312 A111782 A060507
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 23 2005
STATUS
approved