|
|
A111597
|
|
Lah numbers: a(n) = n!*binomial(n-1,6)/7!.
|
|
4
|
|
|
1, 56, 2016, 60480, 1663200, 43908480, 1141620480, 29682132480, 779155977600, 20777492736000, 565147802419200, 15721384321843200, 448059453172531200, 13097122477350912000, 392913674320527360000, 12101741169072242688000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
7,2
|
|
REFERENCES
|
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: ((x/(1-x))^7)/7!.
a(n) = (n!/7!)*binomial(n-1, 7-1).
If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k} (binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) ) ) then a(n+1) = (-1)^n*f(n,6,-8), (n>=6). - Milan Janjic, Mar 01 2009
Sum_{n>=7} 1/a(n) = 6342*(Ei(1) - gamma) - 8988*e + 80374/5, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=7} (-1)^(n+1)/a(n) = 170142*(gamma - Ei(-1)) - 101640/e - 490714/5, where Ei(-1) = -A099285. (End)
|
|
MATHEMATICA
|
k = 7; a[n_] := n!*Binomial[n-1, k-1]/k!; Table[a[n], {n, k, 22}] (* Jean-François Alcover, Jul 09 2013 *)
|
|
PROG
|
(Magma) [Factorial(n-7)*Binomial(n, 7)*Binomial(n-1, 6): n in [7..30]]; // G. C. Greubel, May 10 2021
(Sage) [factorial(n-7)*binomial(n, 7)*binomial(n-1, 6) for n in (7..30)] # G. C. Greubel, May 10 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|