login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172197
Decimal expansion of the abscissa x of a local maximum of the Fibonacci function F(x).
1
1, 0, 9, 4, 5, 7, 6, 1, 0, 5, 2, 3, 1, 6, 4, 5, 6, 7, 0, 1, 0, 8, 8, 3, 0, 5, 4, 7, 9, 8, 5, 2, 9, 9, 4, 6, 3, 0, 0, 9, 9, 4, 3, 5, 9, 8, 4, 9, 5, 9, 9, 6, 9, 2, 0, 7, 3, 3, 3, 1, 7, 4, 5, 0, 9, 7, 8, 7, 4, 1, 0, 6, 7, 3, 9, 7, 7, 5, 8, 0, 4, 6, 9, 5, 1, 1, 2, 9, 6, 4, 7, 3, 6, 8, 6, 0, 3, 3, 2, 4, 2, 9, 0, 0, 8
OFFSET
1,3
COMMENTS
Define the Fibonacci Function F(x) and its derivative dF/dx as in A172081.
At the local maximum, dF(x)/dx = 0.
This constant x=1.0945... here satisfies this condition of vanishing first derivative.
LINKS
EXAMPLE
F(1.0945761052316...) = 1.0098243...
MAPLE
p := (1+sqrt(5))/2 ; F := (p^x - cos(Pi*x)/p^x )/sqrt(5);
Fpr := diff(F, x) ; Fpr2 := diff(Fpr, x) ;
Digits := 80 ; x0 := 1.0 ;
for n from 1 to 10 do
x0 := evalf(x0-subs(x=x0, Fpr)/subs(x=x0, Fpr2)) ;
end do ; # R. J. Mathar, Feb 02 2010
MATHEMATICA
digits = 105; F[x_] := (GoldenRatio^x - Cos[Pi*x]/GoldenRatio^x)/Sqrt[5]; x0 = x /. FindRoot[F'[x], {x, 1}, WorkingPrecision -> digits+1]; RealDigits[x0, 10, digits][[1]] (* Jean-François Alcover, Jan 28 2014 *)
PROG
(Gerd Lamprecht online Iterationsrechner) #(@P@C1], x+x)*@C2]+cos(x*PI)*@C2]+sin(x*PI)*PI)*@P@C1], -x)/@C0]@N@C0]=@Q5); @C1]=@C0]/2+0.5; @C2]=log(@C1]); @B1]=1.09; @B2]=1.1; @B3]=Fx(@B1]); @B4]=Fx(@B2]); d=4e-16; IM=2; @N@B4]=Fx(@B2]); @B0]=(@B4]-@B3])/ (@B2]-@B1]); a=@B1]-@B3]/@B0]; b=Fx(a); if(b*@B4]%3C0){@B1]=@B2]; @B2]=a; @B3]=@B4]; }@F@B2]=a; @B3]*=@H2, @B4], b); }@N(@A@B4])%3Cd)@O(@A@B4])%3Cd)@O@A@B2]-@B1])%3Cd@N0@N1@Nif(@A@B4]) %3Cd)c=@B2]; @Eif(@A@B3])%3C1e-16)c=@B1]; @Ec=(@B1]+@B2])/2;
CROSSREFS
Sequence in context: A240964 A154900 A246546 * A016630 A374490 A213614
KEYWORD
cons,nonn,changed
AUTHOR
Gerd Lamprecht (gerdlamprecht(AT)googlemail.com), Jan 29 2010
EXTENSIONS
Edited, embedded JavaScript source code of URL removed - R. J. Mathar, Feb 02 2010
STATUS
approved