login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240964
Decimal expansion of Sum_{n>=1} n/sinh(n*Pi).
4
0, 9, 4, 5, 7, 3, 0, 1, 9, 6, 6, 4, 7, 6, 1, 9, 3, 9, 5, 1, 3, 5, 8, 8, 9, 0, 0, 8, 5, 4, 4, 1, 3, 8, 4, 9, 3, 1, 4, 9, 5, 5, 3, 2, 9, 3, 1, 9, 2, 2, 4, 0, 1, 0, 4, 9, 7, 9, 5, 1, 5, 3, 1, 9, 5, 5, 5, 9, 2, 1, 0, 2, 7, 5, 4, 7, 6, 6, 3, 1, 1, 2, 8, 9, 7, 7, 4, 0, 1, 4, 8, 4, 9, 0, 9, 9, 6, 5, 1, 5, 2
OFFSET
0,2
COMMENTS
Prudnikov (p. 721, section 5.3.5, formula 1) has a typo, Gamma(1/4)^4 is correct, not Gamma(1/4)^2. - Vaclav Kotesovec, May 19 2022
REFERENCES
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986).
FORMULA
Gamma(1/4)^4/(32*Pi^3) - 1/(4*Pi).
EXAMPLE
0.09457301966476193951358890085441384931495532931922401...
MATHEMATICA
Join[{0}, RealDigits[Gamma[1/4]^4/(32*Pi^3) - 1/(4*Pi), 10, 100] // First]
N[EllipticK[k]/Pi^2*(EllipticK[k] - EllipticE[k]) /. k -> 1/2, 100] (* Vaclav Kotesovec, May 19 2022 *)
PROG
(PARI) suminf(k=1, k/sinh(k*Pi)) \\ Vaclav Kotesovec, May 19 2022
(PARI) suminf(k=1, 1/(2*sinh((k - 1/2)*Pi)^2)) \\ Vaclav Kotesovec, May 19 2022
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved