login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172194 Numerators of the inverse binomial transform of the sequence of fractions  A172030(n)/A172031(n). 0
0, 1, 1, 2, 2, 19, 19, 23, 23, 131, 131, 808, 808, 4469, 4469, 24221, 24221, -2797103, -2797103, 80009738, 80009738, -930456539, -930456539, 127441603151, 127441603151, -6013673706973, -6013673706973, 149990847412508, 149990847412508 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The original sequence starts 0, 1, 5/2, 31/6, 31/3, 619/30, 619/15, 5779/70, 5779/35, 69341/210, 69341/105, ...

The inverse binomial transform yields 0, 1, 1/2, 2/3, 2/3, 19/30, 19/30, 23/35, 23/35, 131/210, 131/210, 808/1155, ... with numerators defining the sequence.

Also the numerators of the partial sums of the Bernoulli Numbers, Sum_{i=0..n} B(i). - Paul Curtz, Aug 02 2013

If we consider this sequence of partial sums b(n) := Sum_{i=0..n} B(i) = 1, 1/2, 2/3, 2/3, ... and also the sequence c(n) := 1 - Sum_{i=0..n) B(i) = 1, 3/2, 4/3, 4/3, ... mentioned in A100649, then b(n)+c(n)=2. - Paul Curtz, Aug 04 2013.

LINKS

Table of n, a(n) for n=0..28.

MAPLE

c := proc(n) option remember; if n <=1 then n; elif n = 2 then 2*procname(n-1)-bernoulli(n-1) ; else 2*procname(n-1)+bernoulli(n-1) ; end if; end proc:

L := [seq(c(n), n=0..30)] ; read("transforms") ; BINOMIALi(L) ; apply(numer, %) ; # R. J. Mathar, Dec 21 2010

CROSSREFS

Cf. A100650 (denominators), A100649, A165142.

Sequence in context: A318418 A184317 A141084 * A093777 A103129 A322898

Adjacent sequences:  A172191 A172192 A172193 * A172195 A172196 A172197

KEYWORD

sign,frac

AUTHOR

Paul Curtz, Jan 29 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 04:34 EDT 2019. Contains 326109 sequences. (Running on oeis4.)