login
A141084
p(p(2^n)-p(n+1)+p(n*2)-p(n^2))-1, where p(n)=n-th prime.
0
1, 2, 2, 18, 228, 1068, 3696, 11046, 30390, 77976, 190978, 455166, 1063452, 2445450, 5561658, 12522478, 27987780, 62097646, 136990768, 300684322
OFFSET
1,2
EXAMPLE
If n=1, then a(1)=p(p(2^1)-p(1+1)+p(1*2)-p(1^2))-1=p(p(2)-p(2)+p(2)-p(1))-1=p(3-3+3-2)-1=p(1)-1=2-1=1.
If n=2, then a(2)=p(p(2^2)-p(2+1)+p(2*2)-p(2^2))-1=p(p(4)-p(3)+p(4)-p(4))-1=p(7-5+7-7)-1=p(2)-1=3-1=2.
If n=3, then a(3)=p(p(2^3)-p(3+1)+p(3*2)-p(3^2))-1=p(p(8)-p(4)+p(6)-p(9))-1=p(19-7+13-23)-1=p(2)-1=3-1=2.
If n=4, then a(4)=p(p(2^4)-p(4+1)+p(4*2)-p(4^2))-1=p(p(16)-p(5)+p(8)-p(16))-1=p(53-11+19-53)-1=p(8)-1=19-1=18.
If n=5, then a(5)=p(p(2^5)-p(5+1)+p(5*2)-p(5^2))-1=p(p(32)-p(6)+p(10)-p(25))-1=p(131-13+29-97)-1=p(50)-1=229-1=228.
If n=6, then a(6)=p(p(2^6)-p(6+1)+p(6*2)-p(6^2))-1=p(p(64)-p(7)+p(12)-p(36))-1=p(311-17+37-151)-1=p(180)-1=1069-1=1068, etc.
MAPLE
p:=ithprime: seq(p(p(2^n)-p(n+1)+p(2*n)-p(n^2))-1, n=1..20); # Emeric Deutsch, Aug 16 2008
MATHEMATICA
Table[Prime[Prime[2^n]-Prime[n+1]+Prime[2n]-Prime[n^2]]-1, {n, 30}] (* Harvey P. Dale, Dec 19 2022 *)
CROSSREFS
Sequence in context: A294341 A318418 A184317 * A172194 A338400 A093777
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by Emeric Deutsch, Aug 16 2008
STATUS
approved