Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Dec 13 2024 12:56:22
%S 1,0,9,4,5,7,6,1,0,5,2,3,1,6,4,5,6,7,0,1,0,8,8,3,0,5,4,7,9,8,5,2,9,9,
%T 4,6,3,0,0,9,9,4,3,5,9,8,4,9,5,9,9,6,9,2,0,7,3,3,3,1,7,4,5,0,9,7,8,7,
%U 4,1,0,6,7,3,9,7,7,5,8,0,4,6,9,5,1,1,2,9,6,4,7,3,6,8,6,0,3,3,2,4,2,9,0,0,8
%N Decimal expansion of the abscissa x of a local maximum of the Fibonacci function F(x).
%C Define the Fibonacci Function F(x) and its derivative dF/dx as in A172081.
%C At the local maximum, dF(x)/dx = 0.
%C This constant x=1.0945... here satisfies this condition of vanishing first derivative.
%H Gerd Lamprecht, <a href="http://www.gerdlamprecht.de/Roemisch_JAVA.htm##@Na=0;@N@B0]=GetKoDezi(-3,0,200);@Ni==0@N1@N0@N#">Iterationsrechner mit Algorithmus</a>
%H Gerd Lamprecht, <a href="http://www.gerdlamprecht.de/Zahlenfolgen.html">Zahlenfolgen (sequences)</a>
%H E. Weisstein, <a href="http://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a>, Mathworld.
%e F(1.0945761052316...) = 1.0098243...
%p p := (1+sqrt(5))/2 ; F := (p^x - cos(Pi*x)/p^x )/sqrt(5);
%p Fpr := diff(F,x) ; Fpr2 := diff(Fpr,x) ;
%p Digits := 80 ; x0 := 1.0 ;
%p for n from 1 to 10 do
%p x0 := evalf(x0-subs(x=x0,Fpr)/subs(x=x0,Fpr2)) ;
%p end do ; # _R. J. Mathar_, Feb 02 2010
%t digits = 105; F[x_] := (GoldenRatio^x - Cos[Pi*x]/GoldenRatio^x)/Sqrt[5]; x0 = x /. FindRoot[F'[x], {x, 1}, WorkingPrecision -> digits+1]; RealDigits[x0, 10, digits][[1]] (* _Jean-François Alcover_, Jan 28 2014 *)
%o (Gerd Lamprecht online Iterationsrechner) #(@P@C1],x+x)*@C2]+cos(x*PI)*@C2]+sin(x*PI)*PI)*@P@C1], -x)/@C0]@N@C0]=@Q5); @C1]=@C0]/2+0.5; @C2]=log(@C1]); @B1]=1.09; @B2]=1.1; @B3]=Fx(@B1]); @B4]=Fx(@B2]); d=4e-16; IM=2; @N@B4]=Fx(@B2]); @B0]=(@B4]-@B3])/ (@B2]-@B1]); a=@B1]-@B3]/@B0]; b=Fx(a); if(b*@B4]%3C0){@B1]=@B2]; @B2]=a; @B3]=@B4]; }@F@B2]=a; @B3]*=@H2,@B4],b); }@N(@A@B4])%3Cd)@O(@A@B4])%3Cd)@O@A@B2]-@B1])%3Cd@N0@N1@Nif(@A@B4]) %3Cd)c=@B2]; @Eif(@A@B3])%3C1e-16)c=@B1]; @Ec=(@B1]+@B2])/2;
%Y Cf. A171909, A172081.
%K cons,nonn,changed
%O 1,3
%A Gerd Lamprecht (gerdlamprecht(AT)googlemail.com), Jan 29 2010
%E Edited, embedded JavaScript source code of URL removed - _R. J. Mathar_, Feb 02 2010