login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172157
Triangle T(n,m) = numerator of 1/n^2 - 1/m^2, read by rows, with T(n,0) = -1.
7
-1, -1, -3, -1, -8, -5, -1, -15, -3, -7, -1, -24, -21, -16, -9, -1, -35, -2, -1, -5, -11, -1, -48, -45, -40, -33, -24, -13, -1, -63, -15, -55, -3, -39, -7, -15, -1, -80, -77, -8, -65, -56, -5, -32, -17, -1, -99, -6, -91, -21, -3, -4, -51, -9, -19, -1, -120, -117, -112
OFFSET
1,3
COMMENTS
The triangle obtained by negating the values of the triangle A120072 and adding a row T(n,0) = -1.
EXAMPLE
The full array of numerators starts in row n=1 with columns m>=0 as:
-1...0...3...8..15..24..35..48..63..80..99. A005563
-1..-3...0...5...3..21...2..45..15..77...6. A061037, A070262
-1..-8..-5...0...7..16...1..40..55...8..91. A061039
-1.-15..-3..-7...0...9...5..33...3..65..21. A061041
-1.-24.-21.-16..-9...0..11..24..39..56...3. A061043
-1.-35..-2..-1..-5.-11...0..13...7...5...4. A061045
-1.-48.-45.-40.-33.-24.-13...0..15..32..51. A061047
-1.-63.-15.-55..-3.-39..-7.-15...0..17...9. A061049
The triangle is the portion below the main diagonal, left from the zeros, 0<=m<n.
MATHEMATICA
T[n_, 0] := -1; T[n_, k_] := 1/n^2 - 1/k^2; Table[Numerator[T[n, k]], {n, 1, 100}, {k, 0, n - 1}] // Flatten (* G. C. Greubel, Sep 19 2018 *)
CROSSREFS
KEYWORD
sign,frac,easy,tabl
AUTHOR
Paul Curtz, Jan 27 2010
STATUS
approved