login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,m) = numerator of 1/n^2 - 1/m^2, read by rows, with T(n,0) = -1.
7

%I #11 Sep 20 2018 00:35:15

%S -1,-1,-3,-1,-8,-5,-1,-15,-3,-7,-1,-24,-21,-16,-9,-1,-35,-2,-1,-5,-11,

%T -1,-48,-45,-40,-33,-24,-13,-1,-63,-15,-55,-3,-39,-7,-15,-1,-80,-77,

%U -8,-65,-56,-5,-32,-17,-1,-99,-6,-91,-21,-3,-4,-51,-9,-19,-1,-120,-117,-112

%N Triangle T(n,m) = numerator of 1/n^2 - 1/m^2, read by rows, with T(n,0) = -1.

%C The triangle obtained by negating the values of the triangle A120072 and adding a row T(n,0) = -1.

%H G. C. Greubel, <a href="/A172157/b172157.txt">Rows n=1..100 of triangle, flattened</a>

%e The full array of numerators starts in row n=1 with columns m>=0 as:

%e -1...0...3...8..15..24..35..48..63..80..99. A005563

%e -1..-3...0...5...3..21...2..45..15..77...6. A061037, A070262

%e -1..-8..-5...0...7..16...1..40..55...8..91. A061039

%e -1.-15..-3..-7...0...9...5..33...3..65..21. A061041

%e -1.-24.-21.-16..-9...0..11..24..39..56...3. A061043

%e -1.-35..-2..-1..-5.-11...0..13...7...5...4. A061045

%e -1.-48.-45.-40.-33.-24.-13...0..15..32..51. A061047

%e -1.-63.-15.-55..-3.-39..-7.-15...0..17...9. A061049

%e The triangle is the portion below the main diagonal, left from the zeros, 0<=m<n.

%t T[n_, 0] := -1; T[n_, k_] := 1/n^2 - 1/k^2; Table[Numerator[T[n, k]], {n, 1, 100}, {k, 0, n - 1}] // Flatten (* _G. C. Greubel_, Sep 19 2018 *)

%Y Cf. A172370, A174233, A165795.

%K sign,frac,easy,tabl

%O 1,3

%A _Paul Curtz_, Jan 27 2010