login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172080
a(n) = n*(12*n^3 + 10*n^2 - 9*n - 7)/6.
1
0, 1, 37, 190, 590, 1415, 2891, 5292, 8940, 14205, 21505, 31306, 44122, 60515, 81095, 106520, 137496, 174777, 219165, 271510, 332710, 403711, 485507, 579140, 685700, 806325, 942201, 1094562, 1264690, 1453915, 1663615, 1895216, 2150192
OFFSET
0,3
COMMENTS
The sequence is related to A172078 by a(n) = n*A172078(n) - Sum_{i=0..n-1} A172078(i).
This is the case d=8 in the identity n^2*(n+1)*(2*d*n-2*d+3)/6 - Sum_{k=0..n-1} k*(k+1)*(2*d*k - 2*d + 3)/6 = n*(n+1)*(3*d*n^2 - d*n + 4*n - 2*d + 2)/12. - Bruno Berselli, May 07 2010, Feb 26 2011
LINKS
B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
FORMULA
a(n) = n*(n+1)*(12*n^2 - 2*n - 7)/6.
G.f.: x*(1 + 32*x + 15*x^2)/(1-x)^5. - Bruno Berselli, Feb 26 2011
E.g.f.: x*(6 + 105*x + 82*x^2 + 12*x^3)*exp(x)/6. - G. C. Greubel, Aug 30 2019
MAPLE
seq(n*(n+1)*(12*n^2 -2*n -7)/6, n=0..40); # G. C. Greubel, Aug 30 2019
MATHEMATICA
CoefficientList[Series[x(1+32x+15x^2)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 01 2014 *)
Table[n*(n+1)*(12*n^2 -2*n -7)/6, {n, 0, 40}] (* G. C. Greubel, Aug 30 2019 *)
PROG
(Magma) [(12*n^4+10*n^3-9*n^2-7*n)/6: n in [0..50]]; // Vincenzo Librandi, Jan 01 2014
(PARI) vector(40, n, n*(n-1)*(12*(n-1)^2 -2*n -5)/6) \\ G. C. Greubel, Aug 30 2019
(Sage) [n*(n+1)*(12*n^2 -2*n -7)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
(GAP) List([0..40], n-> n*(n+1)*(12*n^2 -2*n -7)/6); G. C. Greubel, Aug 30 2019
CROSSREFS
Cf. A172078.
Sequence in context: A142410 A164940 A137724 * A142181 A107196 A140027
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 25 2010
STATUS
approved