The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A172082 a(n) = n*(n+1)*(6*n-5)/2. 4
 0, 1, 21, 78, 190, 375, 651, 1036, 1548, 2205, 3025, 4026, 5226, 6643, 8295, 10200, 12376, 14841, 17613, 20710, 24150, 27951, 32131, 36708, 41700, 47125, 53001, 59346, 66178, 73515, 81375, 89776, 98736, 108273, 118405, 129150, 140526 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Generated by formula: n*(n+1)*(2*d*n-2*d+3)/6 with d=9. This sequence is related to A051682 by a(n) = n*A051682(n) - Sum_{i=0..n-1} A051682(i); in fact this is the case d=9 in the identity n*(n*(d*n-d+2)/2) - Sum_{i=0..n-1} i*(d*i-d+2)/2 = n*(n+1)*(2*d*n -2*d + 3)/6. - Bruno Berselli, Apr 16 2012 REFERENCES E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. - Bruno Berselli, Feb 13 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian), 2008. Index to sequences related to pyramidal numbers. Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(0)=0, a(1)=1, a(2)=21, a(3)=78; for n>3, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jun 29 2011 G.f.: x*(1+17*x)/(1-x)^4. - Harvey P. Dale, Jun 29 2011 a(n) = Sum_{i=0..n-1} (n-i)*(18*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014 E.g.f.: x*(2 + 19*x + 6*x^2)*exp(x)/2. - G. C. Greubel, Aug 30 2019 From Amiram Eldar, Jan 10 2022: (Start) Sum_{n>=1} 1/a(n) = 2*(3*sqrt(3)*Pi + 9*log(3) + 12*log(2) - 5)/55. Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(6*Pi + 6*sqrt(3)*log(sqrt(3)+2) - 16*log(2) + 5)/55. (End) MAPLE seq(n*(n+1)*(6*n-5)/2, n=0..40); # G. C. Greubel, Aug 30 2019 MATHEMATICA Table[(18n^3+3n^2-15n)/6, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 21, 78}, 40] (* Harvey P. Dale, Jun 29 2011 *) CoefficientList[Series[x*(1+17*x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 02 2014 *) PROG (Magma) [(18*n^3+3*n^2-15*n)/6: n in [0..40]]; // Vincenzo Librandi, Jan 02 2014 (PARI) vector(40, n, n*(n-1)*(6*n-11)/2) \\ G. C. Greubel, Aug 30 2019 (Sage) [n*(n+1)*(6*n-5)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019 (GAP) List([0..40], n-> n*(n+1)*(6*n-5)/2); # G. C. Greubel, Aug 30 2019 CROSSREFS Cf. A051682. Cf. similar sequences listed in A237616. Sequence in context: A045559 A144314 A010009 * A296970 A068085 A135945 Adjacent sequences: A172079 A172080 A172081 * A172083 A172084 A172085 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Jan 25 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 28 15:18 EST 2024. Contains 370400 sequences. (Running on oeis4.)