login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164940
Partial sums of A138202.
0
1, 37, 181, 245, 281, 857, 1433, 1433, 1577, 2477, 3053, 3629, 3693, 4269, 6573, 6573, 6609, 8913, 10209, 10785, 11361, 13665, 14241, 14241, 14817, 15717, 20901, 21925, 21925, 27109, 29413, 29413, 29557, 31861, 34165, 36469, 37369, 37945, 43129, 43129
OFFSET
0,2
LINKS
S. K. K. Choi, A. V. Kumchev and R. Osburn, On sums of three squares
FORMULA
For asymptotics see Choi et al.
In particular, lim_{n -> infinity} a(n)/n^2 = 8*Pi^4 / (21*zeta(3)). - Ant King, Mar 15 2013
MATHEMATICA
Prepend[SquaresR[3, #]^2 &/@Range[39], 1]//Accumulate (* Ant King, Mar 15 2013 *)
CROSSREFS
Sequence in context: A140593 A195546 A142410 * A137724 A172080 A142181
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 04 2010
STATUS
approved