login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164938
a(n) = (n^5 - n)/10, which is always an integer.
4
0, 3, 24, 102, 312, 777, 1680, 3276, 5904, 9999, 16104, 24882, 37128, 53781, 75936, 104856, 141984, 188955, 247608, 319998, 408408, 515361, 643632, 796260, 976560, 1188135, 1434888, 1721034, 2051112, 2429997, 2862912, 3355440, 3913536
OFFSET
1,2
FORMULA
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 6. - Harvey P. Dale, Jan 14 2012
G.f.: (3*(x^3+2*x^2+x))/(x-1)^6. - Harvey P. Dale, Jan 14 2012
a(n) = A061167(n)/10. - Michel Marcus, Sep 04 2013
E.g.f.: exp(x)*x^2*(15 + 25*x + 10*x^2 + x^3)/10. - Stefano Spezia, Dec 27 2021
MATHEMATICA
Table[(n^5 - n)/10, {n, 1, 50}] (* Stefan Steinerberger, Sep 03 2009 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 3, 24, 102, 312, 777}, 50] (* Harvey P. Dale, Jan 14 2012 *)
CROSSREFS
Cf. A061167.
Sequence in context: A216725 A334038 A320976 * A342112 A050545 A354676
KEYWORD
easy,nonn
AUTHOR
Bill Welsh (bill.welsh.75(AT)gmail.com), Aug 31 2009
EXTENSIONS
More terms from Stefan Steinerberger, Sep 03 2009
STATUS
approved