login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334038
a(n) = Product_{p<=n, p prime} binomial(n,p).
1
1, 1, 1, 3, 24, 100, 1800, 15435, 702464, 13716864, 163296000, 1383574500, 109294479360, 3842829083808, 1159801183597056, 132320316074821875, 8213884352593920000, 327816138093181337600, 167079259535068179726336, 34044607357920579594754944
OFFSET
0,4
LINKS
EXAMPLE
For n=2, p=2: a(n) = C(2,2) = 1.
For n=3, p=2,3: a(n) = C(3,2) * C(3,3) = 3.
For n=4, p=2,3: a(n) = C(4,2) * C(4,3) = 24.
MAPLE
a:= n-> mul(`if`(isprime(p), binomial(n, p), 1), p=2..n):
seq(a(n), n=0..20); # Alois P. Heinz, Apr 13 2020
PROG
(PARI) a(n) = prod(k=1, n, if (isprime(k), binomial(n, k), 1)); \\ Michel Marcus, Apr 13 2020
(PARI) a(n)=my(s); forprime(p=2, n, s*=binomial(n, p)); s \\ Charles R Greathouse IV, Apr 13 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Om R. Patel, Apr 13 2020
STATUS
approved