login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A137724
Prime numbers p such that p +- ((p-1)/6) are primes.
1
37, 181, 397, 757, 829, 1657, 2089, 2161, 2341, 3061, 5077, 6337, 7057, 7309, 7561, 8389, 9109, 9829, 10369, 10729, 13789, 17137, 21061, 21817, 21961, 23869, 24517, 24877, 25237, 26209, 28297, 29269, 31177, 31249, 32077, 32257, 33049, 33301, 35281, 38377, 39709, 41221, 42337, 44641, 47161
OFFSET
1,1
LINKS
EXAMPLE
37+-6 = primes,
181+-30 = primes,
397+-(396/6) = primes.
MATHEMATICA
w=6; s=""; For[i=1, i<10^3*2, p=Prime[i]; If[PrimeQ[p-((p-1)/w)]&&PrimeQ[p+((p-1)/w)], (*Print[p, ":", p-((p-1)/w), ", ", p+((p-1)/w)]; *)s=s<>ToString[p]<>", "]; i++ ]; Print[s]
Select[Prime[Range[50000]], PrimeQ[# + (# - 1) / 6]&& PrimeQ[# - (# - 1) / 6] &] (* Vincenzo Librandi, Jun 15 2013 °)
Select[Prime[Range[5000]], AllTrue[#+{(#-1)/6, -(#-1)/6}, PrimeQ]&] (* Harvey P. Dale, Jan 09 2024 *)
PROG
(Magma) [p: p in PrimesInInterval(5, 50000)| IsPrime((7*p-1) div 6 ) and IsPrime((5*p+1) div 6)]; // Vincenzo Librandi, Jun 15 2013
CROSSREFS
Sequence in context: A195546 A142410 A164940 * A172080 A142181 A107196
KEYWORD
nonn,easy
AUTHOR
STATUS
approved