login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172012
Expansion of (2-3*x)/(1-3*x-3*x^2) .
1
2, 3, 15, 54, 207, 783, 2970, 11259, 42687, 161838, 613575, 2326239, 8819442, 33437043, 126769455, 480619494, 1822166847, 6908359023, 26191577610, 99299809899, 376474162527, 1427321917278, 5411388239415, 20516130470079, 77782556128482, 294896059795683
OFFSET
0,1
COMMENTS
The case k=3 in a family of sequences a(n) = L(k,n), L(k,n)=k*(L(k,n-1)+L(k,n-2)), L(k,0)=2 and L(k,1)=k.
The case k=1 is A000032 (classic Lucas sequence), k=2 is A080040, this here is essentially A085480.
FORMULA
a(n) = 3*( a(n-1)+a(n-2) ) = 2*A030195(n+1)-3*A030195(n).
L(k,n) = c^n+b^n where c=(k+d)/2 ; b=(k-d)/2; d=sqrt(k*(k+4)) (Binet formula).
a(0)=2, a(1)=3, a(n) = 3*a(n-1)+3*a(n-2). [Harvey P. Dale, Aug 24 2011]
a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 21*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
MATHEMATICA
CoefficientList[Series[(2-3x)/(1-3x-3x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, 3}, {2, 3}, 31] (* Harvey P. Dale, Aug 24 2011 *)
CROSSREFS
Sequence in context: A298409 A151369 A143885 * A323709 A338308 A047014
KEYWORD
nonn,easy
AUTHOR
Claudio Peruzzi (claudio.peruzzi(AT)gmail.com), Jan 22 2010
EXTENSIONS
Edited and extended by R. J. Mathar, Jan 23 2010
STATUS
approved