OFFSET
0,2
COMMENTS
The case k=2 in a family of sequences a(n)=G(k,n), G(k,0)=0, G(k,1)=k*(k+4), G(k,n)=k*G(k,n-1)+k*G(k,n-2).
The Binet formula is G(k,n) = (c^n-b^n)*d where d=sqrt(k*(k+4)); c=(k+d)/2; b=(k-d)/2.
The generating functions are k*(k+4)*x/(1-k*x-k*x^2).
The case k=1 is A022088.
LINKS
FORMULA
Binet formula: a(n) = 2*2^n*((-1+3^(1/2))^(-n)-(-1)^n*(1+3^(1/2))^(-n))*3^(1/2) .
G.f.: 12*x/(1-2*x-2*x^2). a(n) = 2*a(n-1)+2*a(n-2).
MATHEMATICA
LinearRecurrence[{2, 2}, {0, 12}, 30] (* Harvey P. Dale, Mar 06 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Claudio Peruzzi (claudio.peruzzi(AT)gmail.com), Jan 22 2010
EXTENSIONS
Edited and extended by R. J. Mathar, Jan 23 2010
STATUS
approved