login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172011
a(n) = 12*A002605(n).
0
0, 12, 24, 72, 192, 528, 1440, 3936, 10752, 29376, 80256, 219264, 599040, 1636608, 4471296, 12215808, 33374208, 91180032, 249108480, 680577024, 1859371008, 5079896064, 13878534144, 37916860416, 103590789120, 283015299072, 773212176384, 2112454950912
OFFSET
0,2
COMMENTS
The case k=2 in a family of sequences a(n)=G(k,n), G(k,0)=0, G(k,1)=k*(k+4), G(k,n)=k*G(k,n-1)+k*G(k,n-2).
The Binet formula is G(k,n) = (c^n-b^n)*d where d=sqrt(k*(k+4)); c=(k+d)/2; b=(k-d)/2.
The generating functions are k*(k+4)*x/(1-k*x-k*x^2).
The case k=1 is A022088.
FORMULA
Binet formula: a(n) = 2*2^n*((-1+3^(1/2))^(-n)-(-1)^n*(1+3^(1/2))^(-n))*3^(1/2) .
G.f.: 12*x/(1-2*x-2*x^2). a(n) = 2*a(n-1)+2*a(n-2).
MATHEMATICA
LinearRecurrence[{2, 2}, {0, 12}, 30] (* Harvey P. Dale, Mar 06 2023 *)
CROSSREFS
Sequence in context: A001335 A206026 A145899 * A239635 A001041 A216425
KEYWORD
nonn,easy
AUTHOR
Claudio Peruzzi (claudio.peruzzi(AT)gmail.com), Jan 22 2010
EXTENSIONS
Edited and extended by R. J. Mathar, Jan 23 2010
STATUS
approved