login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171621
Numerator of 1/4 - 1/n^2, each fourth term multiplied by 4.
6
0, 5, 3, 21, 8, 45, 15, 77, 24, 117, 35, 165, 48, 221, 63, 285, 80, 357, 99, 437, 120, 525, 143, 621, 168, 725, 195, 837, 224, 957, 255, 1085, 288, 1221, 323, 1365, 360, 1517, 399, 1677, 440, 1845, 483, 2021, 528
OFFSET
2,2
COMMENTS
These are the square roots of the fifth column of the array of denominators mentioned in A171522.
FORMULA
a(n) = A061037(n) * A010121(n+2).
a(2n+2) = A005563(n). a(2n+3) = A078371(n).
G.f.: x^3*(-5-3*x-6*x^2+x^3+3*x^4) / ( (x-1)^3*(1+x)^3 ). - R. J. Mathar, Apr 02 2011
a(n) = -(-5+3*(-1)^n)*(-4+n^2)/8. - Colin Barker, Nov 03 2014
Sum_{n>=3} 1/a(n) = 13/12. - Amiram Eldar, Aug 11 2022
MAPLE
A061037 := proc(n) 1/4-1/n^2 ; numer(%) ; end proc:
A171621 := proc(n) if n mod 4 = 2 then 4*A061037(n) ; else A061037(n) ; end if; end proc:
seq(A171621(n), n=2..90) ; # R. J. Mathar, Apr 02 2011
MATHEMATICA
Table[-(-5+3*(-1)^n)*(-4+n^2)/8, {n, 0, 100}] (* G. C. Greubel, Sep 19 2018 *)
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 5, 3, 21, 8, 45}, 50] (* Harvey P. Dale, Nov 01 2019 *)
PROG
(PARI) concat(0, Vec(x^3*(-5-3*x-6*x^2+x^3+3*x^4)/((x-1)^3*(1+x)^3) + O(x^100))) \\ Colin Barker, Nov 03 2014
(Magma) [-(-5+3*(-1)^n)*(-4+n^2)/8: n in [0..100]]; // G. C. Greubel, Sep 19 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Dec 13 2009
STATUS
approved